-
Notifications
You must be signed in to change notification settings - Fork 235
/
Copy pathmath_mk2.py
178 lines (131 loc) · 6.81 KB
/
math_mk2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# END GPL LICENSE BLOCK #####
from math import degrees, sqrt
from itertools import zip_longest
import bpy
from bpy.props import EnumProperty, FloatProperty, FloatVectorProperty
from mathutils import Vector
from sverchok.node_tree import SverchCustomTreeNode
from sverchok.data_structure import levelsOflist, updateNode
from sverchok.ui.sv_icons import custom_icon
# pylint: disable=C0326
socket_type = {'s': 'SvStringsSocket', 'v': 'SvVerticesSocket'}
func_dict = {
"DOT": (1, lambda u, v: Vector(u).dot(v), ('vv s'), "Dot product"),
"DISTANCE": (5, lambda u, v: (Vector(u) - Vector(v)).length, ('vv s'), "Distance"),
"ANGLE DEG": (12, lambda u, v: degrees(Vector(u).angle(v, 0)), ('vv s'), "Angle Degrees"),
"ANGLE RAD": (17, lambda u, v: Vector(u).angle(v, 0), ('vv s'), "Angle Radians"),
"LEN": (4, lambda u: sqrt((u[0]*u[0])+(u[1]*u[1])+(u[2]*u[2])), ('v s'), "Length"),
"CROSS": (0, lambda u, v: Vector(u).cross(v)[:], ('vv v'), "Cross product"),
"ADD": (2, lambda u, v: (u[0]+v[0], u[1]+v[1], u[2]+v[2]), ('vv v'), "Add"),
"SUB": (3, lambda u, v: (u[0]-v[0], u[1]-v[1], u[2]-v[2]), ('vv v'), "Sub"),
"PROJECT": (13, lambda u, v: Vector(u).project(v)[:], ('vv v'), "Project"),
"REFLECT": (14, lambda u, v: Vector(u).reflect(v)[:], ('vv v'), "Reflect"),
"COMPONENT-WISE": (19, lambda u, v: (u[0]*v[0], u[1]*v[1], u[2]*v[2]), ('vv v'), "Component-wise U*V"),
"SCALAR": (15, lambda u, s: (u[0]*s, u[1]*s, u[2]*s), ('vs v'), "Multiply Scalar"),
"1/SCALAR": (16, lambda u, s: (u[0]/s, u[1]/s, u[2]/s), ('vs v'), "Multiply 1/Scalar"),
"ROUND": (18, lambda u, s: Vector(u).to_tuple(abs(int(s))), ('vs v'), "Round s digits"),
"NORMALIZE": (6, lambda u: Vector(u).normalized()[:], ('v v'), "Normalize"),
"NEG": (7, lambda u: (-Vector(u))[:], ('v v'), "Negate"),
"SCALE XY": (30, lambda u, s: (u[0]*s, u[1]*s, u[2]), ('vs v'), "Scale XY"),
"SCALE XZ": (31, lambda u, s: (u[0]*s, u[1], u[2]*s), ('vs v'), "Scale XZ"),
"SCALE YZ": (32, lambda u, s: (u[0], u[1]*s, u[2]*s), ('vs v'), "Scale YZ")
}
mode_items = [(k, descr, '', ident) for k, (ident, _, _, descr) in sorted(func_dict.items(), key=lambda k: k[1][0])]
# apply f to all values recursively
# - fx and fxy do full list matching by length
def recurse_fx(l, f, level):
if not level:
return f(l)
else:
rfx = recurse_fx
t = [rfx(i, f, level-1) for i in l]
return t
def recurse_fxy(l1, l2, f, level):
res = []
res_append = res.append
# will only be used if lists are of unequal length
fl = l2[-1] if len(l1) > len(l2) else l1[-1]
if level == 1:
for u, v in zip_longest(l1, l2, fillvalue=fl):
res_append(f(u, v))
else:
for u, v in zip_longest(l1, l2, fillvalue=fl):
res_append(recurse_fxy(u, v, f, level-1))
return res
class SvVectorMathNodeMK2(SverchCustomTreeNode, bpy.types.Node):
'''Vector: Add, Dot P..'''
bl_idname = 'SvVectorMathNodeMK2'
bl_label = 'Vector Math'
bl_icon = 'THREE_DOTS'
sv_icon = 'SV_VECTOR_MATH'
replacement_nodes = [('SvVectorMathNodeMK3', None, None)]
def mode_change(self, context):
self.update_sockets()
updateNode(self, context)
current_op: EnumProperty(
items=mode_items,
name="Function",
description="Function choice",
default="COMPONENT-WISE",
update=mode_change)
amount: FloatProperty(default=1.0, name='amount', update=updateNode)
v3_input_0: FloatVectorProperty(size=3, default=(0,0,0), name='input a', update=updateNode)
v3_input_1: FloatVectorProperty(size=3, default=(0,0,0), name='input b', update=updateNode)
def draw_label(self):
text = self.current_op
if text in {'SCALAR', '1/SCALAR'}:
text = f'A * {text}'
return text
def draw_buttons(self, ctx, layout):
layout.prop(self, "current_op", text="", icon_value=custom_icon("SV_FUNCTION"))
def sv_init(self, context):
self.inputs.new('SvVerticesSocket', "A").prop_name = 'v3_input_0'
self.inputs.new('SvVerticesSocket', "B").prop_name = 'v3_input_1'
self.outputs.new('SvVerticesSocket', "Out")
def update_sockets(self):
socket_info = func_dict.get(self.current_op)[2]
t_inputs, t_outputs = socket_info.split(' ')
self.outputs[0].replace_socket(socket_type.get(t_outputs))
if len(t_inputs) > len(self.inputs):
self.inputs.new('SvVerticesSocket', "dummy")
elif len(t_inputs) < len(self.inputs):
self.inputs.remove(self.inputs[-1])
renames = 'AB'
for idx, t_in in enumerate(t_inputs):
s = self.inputs[idx].replace_socket(socket_type.get(t_in), renames[idx])
s.prop_name = f'v3_input_{idx}' if t_in == 'v' else 'amount'
def process(self):
inputs, outputs = self.inputs, self.outputs
if not outputs[0].is_linked:
return
func = func_dict.get(self.current_op)[1]
num_inputs = len(inputs)
# get either input data, or socket default
input_one = inputs[0].sv_get(deepcopy=True)
level = levelsOflist(input_one) - 1
if num_inputs == 1:
result = recurse_fx(input_one, func, level)
else:
input_two = inputs[1].sv_get(deepcopy=True)
result = recurse_fxy(input_one, input_two, func, level)
outputs[0].sv_set(result)
def register():
bpy.utils.register_class(SvVectorMathNodeMK2)
def unregister():
bpy.utils.unregister_class(SvVectorMathNodeMK2)