-
Notifications
You must be signed in to change notification settings - Fork 235
/
Copy pathfield_random_probe.py
159 lines (133 loc) · 5.66 KB
/
field_random_probe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import random
import numpy as np
import bpy
from bpy.props import FloatProperty, BoolProperty, IntProperty
from sverchok.node_tree import SverchCustomTreeNode
from sverchok.data_structure import updateNode, zip_long_repeat
BATCH_SIZE = 50
MAX_ITERATIONS = 1000
class SvFieldRandomProbeNode(SverchCustomTreeNode, bpy.types.Node):
"""
Triggers: Scalar Field Random Probe
Tooltip: Generate random points according to scalar field
"""
bl_idname = 'SvFieldRandomProbeNode'
bl_label = 'Field Random Probe'
bl_icon = 'OUTLINER_OB_EMPTY'
sv_icon = 'SV_FIELD_RANDOM_PROBE'
threshold : FloatProperty(
name = "Threshold",
default = 0.5,
update = updateNode)
field_min : FloatProperty(
name = "Field Minimum",
default = 0.0,
update = updateNode)
field_max : FloatProperty(
name = "Field Maximum",
default = 1.0,
update = updateNode)
seed: IntProperty(default=0, name='Seed', update=updateNode)
count : IntProperty(
name = "Count",
default = 50,
min = 1,
update = updateNode)
def update_sockets(self, context):
self.inputs['FieldMin'].hide_safe = self.proportional != True
self.inputs['FieldMax'].hide_safe = self.proportional != True
updateNode(self, context)
proportional : BoolProperty(
name = "Proportional",
default = False,
update = update_sockets)
def draw_buttons(self, context, layout):
layout.prop(self, "proportional", toggle=True)
def sv_init(self, context):
self.inputs.new('SvScalarFieldSocket', "Field")
self.inputs.new('SvVerticesSocket', "Bounds")
self.inputs.new('SvStringsSocket', "Count").prop_name = 'count'
self.inputs.new('SvStringsSocket', "Threshold").prop_name = 'threshold'
self.inputs.new('SvStringsSocket', "FieldMin").prop_name = 'field_min'
self.inputs.new('SvStringsSocket', "FieldMax").prop_name = 'field_max'
self.inputs.new('SvStringsSocket', 'Seed').prop_name = 'seed'
self.outputs.new('SvVerticesSocket', "Vertices")
self.update_sockets(context)
def get_bounds(self, vertices):
vs = np.array(vertices)
min = vs.min(axis=0)
max = vs.max(axis=0)
return min.tolist(), max.tolist()
def process(self):
if not any(socket.is_linked for socket in self.outputs):
return
fields_s = self.inputs['Field'].sv_get()
vertices_s = self.inputs['Bounds'].sv_get()
count_s = self.inputs['Count'].sv_get()
threshold_s = self.inputs['Threshold'].sv_get()
field_min_s = self.inputs['FieldMin'].sv_get()
field_max_s = self.inputs['FieldMax'].sv_get()
seed_s = self.inputs['Seed'].sv_get()
verts_out = []
inputs = zip_long_repeat(fields_s, vertices_s, threshold_s, field_min_s, field_max_s, count_s, seed_s)
for field, vertices, threshold, field_min, field_max, count, seed in inputs:
if isinstance(threshold, (list, tuple)):
threshold = threshold[0]
if isinstance(field_min, (list, tuple)):
field_min = field_min[0]
if isinstance(field_max, (list, tuple)):
field_max = field_max[0]
if isinstance(count, (list, tuple)):
count = count[0]
if isinstance(seed, (list, tuple)):
seed = seed[0]
random.seed(seed)
b1, b2 = self.get_bounds(vertices)
x_min, y_min, z_min = b1
x_max, y_max, z_max = b2
done = 0
new_verts = []
iterations = 0
while done < count:
iterations += 1
if iterations > MAX_ITERATIONS:
self.error("Maximum number of iterations (%s) reached, stop.", MAX_ITERATIONS)
break
batch_xs = []
batch_ys = []
batch_zs = []
batch = []
left = count - done
max_size = min(BATCH_SIZE, left)
for i in range(max_size):
x = random.uniform(x_min, x_max)
y = random.uniform(y_min, y_max)
z = random.uniform(z_min, z_max)
batch_xs.append(x)
batch_ys.append(y)
batch_zs.append(z)
batch.append((x, y, z))
batch_xs = np.array(batch_xs)#[np.newaxis][np.newaxis]
batch_ys = np.array(batch_ys)#[np.newaxis][np.newaxis]
batch_zs = np.array(batch_zs)#[np.newaxis][np.newaxis]
batch = np.array(batch)
values = field.evaluate_grid(batch_xs, batch_ys, batch_zs)
#values = values[0][0]
good_idxs = values >= threshold
if not self.proportional:
batch_verts = batch[good_idxs].tolist()
new_verts.extend(batch_verts)
else:
batch_verts = []
for vert, value in zip(batch[good_idxs].tolist(), values[good_idxs].tolist()):
probe = random.uniform(field_min, field_max)
if probe <= value:
batch_verts.append(vert)
new_verts.extend(batch_verts)
done += len(batch_verts)
verts_out.append(new_verts)
self.outputs['Vertices'].sv_set(verts_out)
def register():
bpy.utils.register_class(SvFieldRandomProbeNode)
def unregister():
bpy.utils.unregister_class(SvFieldRandomProbeNode)