-
Notifications
You must be signed in to change notification settings - Fork 235
/
Copy pathellipse_mk2.py
325 lines (258 loc) · 11.4 KB
/
ellipse_mk2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
import bpy
from bpy.props import BoolProperty, IntProperty, FloatProperty, EnumProperty
from sverchok.node_tree import SverchCustomTreeNode
from sverchok.data_structure import (match_long_repeat, updateNode, get_edge_loop)
from sverchok.utils.sv_transform_helper import AngleUnits, SvAngleHelper
from math import sin, cos, pi, sqrt
centering_items = [("F1", "F1", "Ellipse focal point 1", 1),
("C", "C", "Ellipse center point", 2),
("F2", "F2", "Ellipse focal point 2", 3)]
mode_items = [("AB", "a b", "Major Radius / Minor Radius", 1),
("AE", "a e", "Major Radius / Eccentricity", 2),
("AC", "a c", "Major Radius / Focal Length", 3)]
class SvEllipseNodeMK2(SverchCustomTreeNode, bpy.types.Node, SvAngleHelper):
"""
Triggers: Ellipse
Tooltip: Generate ellipses
"""
bl_idname = 'SvEllipseNodeMK2'
bl_label = 'Ellipse'
sv_icon = 'SV_ELLIPSE'
replacement_nodes = [('SvEllipseNodeMK3', None, None)]
def update_mode(self, context):
''' Update the ellipse parameters of the new mode based on previous mode ones'''
if self.mode == self.last_mode:
return
# from to
switch_state = (self.last_mode, self.mode)
a = self.major_radius
e = self.eccentricity
c = self.focal_length
self.updating = True
if switch_state == ("AE", "AB"):
self.minor_radius = a * sqrt(1 - e * e)
elif switch_state == ("AC", "AB"):
c = min(a, c)
self.minor_radius = sqrt(a * a - c * c)
elif switch_state == ("AB", "AE"):
b = min(a, self.minor_radius)
self.eccentricity = sqrt(1 - (b * b) / (a * a))
elif switch_state == ("AC", "AE"):
self.eccentricity = c / a
elif switch_state == ("AB", "AC"):
b = min(a, self.minor_radius)
self.focal_length = sqrt(a * a - b * b)
elif switch_state == ("AE", "AC"):
self.focal_length = a * e
self.updating = False
self.last_mode = self.mode
self.update_sockets()
updateNode(self, context)
def update_ellipse(self, context):
if self.updating:
return
updateNode(self, context)
def update_angles(self, context, au):
''' Update all the angles to preserve their values in the new units '''
self.phase = self.phase * au
self.rotation = self.rotation * au
centering: EnumProperty(
name="Centering", items=centering_items,
description="Center the ellipse around F1, C or F2",
default="C", update=updateNode)
mode: EnumProperty(
name="Mode", items=mode_items,
description="Ellipse definition mode",
default="AB", update=update_mode)
last_mode: EnumProperty(
name="Mode", items=mode_items,
description="Ellipse definition last mode",
default="AB")
major_radius: FloatProperty(
name='Major Radius', description='Ellipse major radius',
default=1.0, min=0.0, update=update_ellipse)
minor_radius: FloatProperty(
name='Minor Radius', description='Ellipse minor radius',
default=0.8, min=0.0, update=update_ellipse)
eccentricity: FloatProperty(
name='Eccentricity', description='Ellipse eccentricity',
default=0.6, min=0.0, max=1.0, update=update_ellipse)
focal_length: FloatProperty(
name='Focal Length', description='Ellipse focal length',
default=0.6, min=0.0, update=update_ellipse)
num_verts: IntProperty(
name='Num Verts', description='Number of vertices in the ellipse',
default=36, min=3, update=updateNode)
phase: FloatProperty(
name='Phase', description='Phase ellipse vertices around the center by this angle amount',
default=0.0, update=SvAngleHelper.update_angle)
rotation: FloatProperty(
name='Rotation', description='Rotate ellipse vertices around the centering point by this angle amount',
default=0.0, update=SvAngleHelper.update_angle)
scale: FloatProperty(
name='Scale', description='Scale ellipse radii by this amount',
default=1.0, min=0.0, update=updateNode)
updating: BoolProperty(default=False) # used for disabling update callback
def migrate_from(self, old_node):
''' Migration from old nodes '''
if old_node.bl_idname == "SvEllipseNode":
self.angle_units = AngleUnits.RADIANS
self.last_angle_units = AngleUnits.RADIANS
def sv_init(self, context):
self.width = 160
self.inputs.new('SvStringsSocket', "Major Radius").prop_name = "major_radius"
self.inputs.new('SvStringsSocket', "Minor Radius").prop_name = "minor_radius"
self.inputs.new('SvStringsSocket', "Num Verts").prop_name = "num_verts"
self.inputs.new('SvStringsSocket', "Phase").prop_name = "phase"
self.inputs.new('SvStringsSocket', "Rotation").prop_name = "rotation"
self.inputs.new('SvStringsSocket', "Scale").prop_name = "scale"
self.outputs.new('SvVerticesSocket', "Verts")
self.outputs.new('SvStringsSocket', "Edges")
self.outputs.new('SvStringsSocket', "Polys")
self.outputs.new('SvVerticesSocket', "F1")
self.outputs.new('SvVerticesSocket', "F2")
def draw_buttons(self, context, layout):
col = layout.column(align=True)
row = col.row(align=True)
row.prop(self, "mode", expand=True)
row = col.row(align=True)
row.prop(self, "centering", expand=True)
def draw_buttons_ext(self, context, layout):
self.draw_angle_units_buttons(context, layout)
def update_sockets(self):
if self.mode == "AB":
socket2 = self.inputs[1]
socket2.replace_socket("SvStringsSocket", "Minor Radius").prop_name = "minor_radius"
elif self.mode == "AE":
socket2 = self.inputs[1]
socket2.replace_socket("SvStringsSocket", "Eccentricity").prop_name = "eccentricity"
else: # AC
socket2 = self.inputs[1]
socket2.replace_socket("SvStringsSocket", "Focal Length").prop_name = "focal_length"
def make_ellipse(self, a, b, N, phase, rotation, scale):
'''
Make an Ellipse (verts, edges and polys)
a : major radius of the ellipse
b : minor radius of the ellipse
N : number of vertices in the curve
phase : shift the points along the curve by this angle amount
rotation : rotate the ellipse in plane by this angle amount
scale : scale the major & minor radii by this factor
'''
verts = []
edges = []
polys = []
a = a * scale
b = b * scale
if a > b:
dx = sqrt(a * a - b * b)
dy = 0
else:
dx = 0
dy = sqrt(b * b - a * a)
if self.centering == "F1":
cx = -dx
cy = -dy
elif self.centering == "F2":
cx = +dx
cy = +dy
else: # "C"
cx = 0
cy = 0
sins = sin(rotation) # cached for performance
coss = cos(rotation) # cached for performance
f1x = -cx - dx
f1y = -cy - dy
f2x = -cx + dx
f2y = -cy + dy
f1xx = f1x * coss - f1y * sins
f1yy = f1x * sins + f1y * coss
f2xx = f2x * coss - f2y * sins
f2yy = f2x * sins + f2y * coss
f1 = [f1xx, f1yy, 0]
f2 = [f2xx, f2yy, 0]
delta = 2 * pi / N # cached for performance
add_vert = verts.append
for n in range(N):
theta = delta * n + phase
x = -cx + a * cos(theta)
y = -cy + b * sin(theta)
# apply in-plane rotation
xx = x * coss - y * sins
yy = x * sins + y * coss
add_vert((xx, yy, 0))
edges = get_edge_loop(N)
polys = [list(range(N))]
return verts, edges, polys, f1, f2
def process(self):
outputs = self.outputs
# return if no outputs are connected
if not any(s.is_linked for s in outputs):
return
# input values lists (single or multi value)
inputs = self.inputs
input_v1 = inputs[0].sv_get()[0] # major radius
input_v2 = inputs[1].sv_get()[0] # minor radius, eccentricity or focal length
input_N = inputs["Num Verts"].sv_get()[0]
input_p = inputs["Phase"].sv_get()[0]
input_r = inputs["Rotation"].sv_get()[0]
input_s = inputs["Scale"].sv_get()[0]
# convert main input parameters to major/minor radii (and sanitize inputs)
if self.mode == "AB":
input_a, input_b = match_long_repeat([input_v1, input_v2])
input_a = list(map(lambda a: max(0.0, a), input_a))
input_b = list(map(lambda a, b: max(0.0, min(a, b)), input_a, input_b))
elif self.mode == "AE":
input_a, input_e = match_long_repeat([input_v1, input_v2])
input_a = list(map(lambda a: max(0.0, a), input_a))
input_e = list(map(lambda e: max(0.0, min(1.0, e)), input_e))
input_b = list(map(lambda a, e: a * sqrt(1 - e * e), input_a, input_e))
else: # "AC"
input_a, input_c = match_long_repeat([input_v1, input_v2])
input_a = list(map(lambda a: max(0.0, a), input_a))
input_c = list(map(lambda a, c: max(0.0, min(a, c)), input_a, input_c))
input_b = list(map(lambda a, c: sqrt(a * a - c * c), input_a, input_c))
# sanitize more inputs
input_N = list(map(lambda n: max(3, int(n)), input_N))
input_s = list(map(lambda s: max(0.0, s), input_s))
parameters = match_long_repeat([input_a, input_b, input_N, input_p, input_r, input_s])
# conversion factor from the current angle units to radians
au = self.radians_conversion_factor()
verts_list = []
edges_list = []
polys_list = []
f1_list = []
f2_list = []
for a, b, N, p, r, s in zip(*parameters):
verts, edges, polys, f1, f2 = self.make_ellipse(a, b, N, p * au, r * au, s)
verts_list.append(verts)
edges_list.append(edges)
polys_list.append(polys)
f1_list.append(f1)
f2_list.append(f2)
outputs["Verts"].sv_set(verts_list)
outputs["Edges"].sv_set(edges_list)
outputs["Polys"].sv_set(polys_list)
outputs["F1"].sv_set([f1_list])
outputs["F2"].sv_set([f2_list])
def register():
bpy.utils.register_class(SvEllipseNodeMK2)
def unregister():
bpy.utils.unregister_class(SvEllipseNodeMK2)