-
Notifications
You must be signed in to change notification settings - Fork 235
/
Copy pathadaptive_polygons_mk2.py
950 lines (826 loc) · 40.9 KB
/
adaptive_polygons_mk2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
from math import sin, cos, pi, sqrt, pow
from functools import reduce
import bpy
from bpy.props import FloatProperty, EnumProperty, BoolProperty, IntProperty
from mathutils import Vector, Matrix
from mathutils.geometry import barycentric_transform
from sverchok.node_tree import SverchCustomTreeNode
from sverchok.data_structure import (updateNode,
Vector_degenerate, match_long_repeat,
fullList, cycle_for_length,
get_data_nesting_level,
rotate_list)
from sverchok.ui.sv_icons import custom_icon
from sverchok.utils.sv_bmesh_utils import bmesh_from_pydata, remove_doubles
from sverchok.utils.sv_mesh_utils import mesh_join
from sverchok.utils.geom import diameter, LineEquation2D, center
# "coauthor": "Alessandro Zomparelli (sketchesofcode)"
cos_pi_6 = cos(pi/6)
sin_pi_6 = sin(pi/6)
sqrt_3 = sqrt(3)
sqrt_3_6 = sqrt_3/6
sqrt_3_3 = sqrt_3/3
sqrt_3_2 = sqrt_3/2
class OutputData(object):
def __init__(self):
self.verts_out = []
self.faces_out = []
self.face_data_out = []
self.vert_recpt_idx_out = []
self.face_recpt_idx_out = []
class RecptFaceData(object):
def __init__(self):
self.vertices_co = []
self.vertices_normal = []
self.vertices_idxs = []
self.index = 0
self.normal = None
self.center = None
self.frame_width = None
def copy(self):
r = RecptFaceData()
r.vertices_co = self.vertices_co[:]
r.vertices_normal = self.vertices_normal[:]
r.vertices_idxs = self.vertices_idxs[:]
r.normal = self.normal
r.center = self.center
r.frame_width = self.frame_width
r.index = self.index
return r
class DonorData(object):
def __init__(self):
self.min_x = None
self.max_x = None
self.min_y = None
self.max_y = None
self.tri_vert_1 = None
self.tri_vert_2 = None
self.tri_vert_3 = None
self.verts_v = []
self.faces_i = []
self.face_data_i = []
class SvAdaptivePolygonsNodeMk2(SverchCustomTreeNode, bpy.types.Node):
"""
Triggers: Adaptive Polygons Tessellate Tissue
Tooltip: Generate an adapted copy of donor object along each face of recipient object.
"""
bl_idname = 'SvAdaptivePolygonsNodeMk2'
bl_label = 'Adaptive Polygons Mk2'
bl_icon = 'OUTLINER_OB_EMPTY'
sv_icon = 'SV_ADAPTATIVE_POLS'
replacement_nodes = [('SvAdaptivePolygonsNodeMk3',
dict(VersR='Vertices Recipient',
PolsR='Polygons Recipient',
VersD='Vertices Donor',
PolsD='Polygons Donor',
FaceDataD='FaceData Donor'), None)]
axes = [
("X", "X", "Orient donor's X axis along normal", 0),
("Y", "Y", "Orient donor's Y axis along normal", 1),
("Z", "Z", "Orient donor's Z axis along normal", 2)
]
normal_axis: EnumProperty(
name = "Normal axis",
description = "Donor object axis to be oriented along recipient face normal",
items = axes,
default = 'Z',
update = updateNode)
width_coef: FloatProperty(
name='Width coeff',
description = "Donor object width coefficient",
default=1.0, max=3.0, min=0.5, update=updateNode)
frame_width: FloatProperty(
name='Frame width',
description = "Frame width coefficient for Frame / Fan mode",
default=0.5, max=1.0, min=0.0, update=updateNode)
z_coef: FloatProperty(
name='Z coeff',
default=1.0, max=3.0, min=0.0, update=updateNode)
z_offset: FloatProperty(
name = "Z offset",
default = 0.0,
update = updateNode)
normal_interp_modes = [
("LINEAR", "Linear", "Exact / linear normals interpolation", 0),
("SMOOTH", "Unit length", "Use normals of unit length", 1)
]
normal_interp_mode : EnumProperty(
name = "Interpolate normals",
description = "Normals interpolation mode",
items = normal_interp_modes, default = "LINEAR",
update = updateNode)
normal_modes = [
("MAP", "Map", "Interpolate from donor vertex normals", 0),
("FACE", "Face", "Use donor face normals", 1)
]
normal_mode : EnumProperty(
name = "Use normals",
description = "Normals mapping mode",
items = normal_modes, default = "MAP",
update = updateNode)
use_shell_factor : BoolProperty(
name = "Use shell factor",
description = "Use shell factor to make shell thickness constant",
default = False,
update = updateNode)
z_scale_modes = [
("PROP", "Proportional", "Scale along normal proportionally with the donor object", 0),
("CONST", "Constant", "Constant scale along normal", 1),
("AUTO", "Auto", "Try to calculate the correct scale automatically", 2)
]
z_scale : EnumProperty(
name = "Z Scale",
description = "Mode of scaling along the normals",
items = z_scale_modes, default = "PROP",
update = updateNode)
z_rotation: FloatProperty(
name = "Z Rotation",
description = "Rotate donor object around recipient's face normal",
min = 0, max = 2*pi, default = 0,
update = updateNode)
poly_rotation: IntProperty(
name = "Polygons rotation",
description = "Rotate indexes in polygons definition",
min = 0, default = 0,
update = updateNode)
xy_modes = [
("BOUNDS", "Bounds", "Map donor object bounds to recipient face", 0),
("PLAIN", "As Is", "Map donor object's coordinate space to recipient face as-is", 1)
]
xy_mode : EnumProperty(
name = "Coordinates",
description = "Donor object coordinates mapping",
items = xy_modes, default = "BOUNDS",
update = updateNode)
tri_bound_modes = [
("EQUILATERAL", "Equilateral", "Use unit-sided equilateral triangle as a base area",
custom_icon("SV_EQUILATERAL_TRIANGLE"), 0),
("RECTANGULAR", "Rectangular", "Use rectangular triangle with hypotenuse of 2 as a base area",
custom_icon("SV_RECTANGULAR_TRIANGLE"), 1)
]
tri_bound_mode : EnumProperty(
name = "Bounding triangle",
description = "Type of triangle to use as a bounding triangle",
items = tri_bound_modes,
default = "EQUILATERAL",
update = updateNode)
map_modes = [
("QUADTRI", "Quads / Tris Auto", "Use Quads or Tris mapping automatically", 0),
("QUADS", "Quads Always", "Use Quads mapping even for the Tris", 1)
]
map_mode : EnumProperty(
name = "Faces mode",
description = "Donor object mapping mode",
items = map_modes, default = "QUADTRI",
update = updateNode)
skip_modes = [
("SKIP", "Skip", "Do not output anything", 0),
("ASIS", "As Is", "Output these faces as is", 1)
]
mask_mode: EnumProperty(
name = "Mask mode",
description = "What to do with masked out faces",
items = skip_modes, default = "SKIP",
update = updateNode)
ngon_modes = [
("QUADS", "As Quads", "Try to process as Quads", 0),
("SKIP", "Skip", "Do not output anything", 1),
("ASIS", "As Is", "Output these faces as is", 2)
]
ngon_mode: EnumProperty(
name = "NGons",
description = "What to do with NGons",
items = ngon_modes, default = "QUADS",
update = updateNode)
def update_sockets(self, context):
show_width = self.frame_mode != 'NEVER'
if 'FrameWidth' in self.inputs:
self.inputs['FrameWidth'].hide_safe = not show_width
if 'Threshold' in self.inputs:
self.inputs['Threshold'].hide_safe = not self.join or not self.remove_doubles
updateNode(self, context)
frame_modes = [
("NEVER", "Do not use", "Do not use Frame / Fan mode", 0),
("NGONS", "NGons only", "Use Frame / Fan mode for NGons (n > 4) only", 1),
("NGONQUAD", "NGons and Quads", "Use Frame / Fan mode for NGons and Quads (n >= 4)", 2),
("ALWAYS", "Always", "Use Frame / Fan mode for all faces", 3)
]
frame_mode: EnumProperty(
name = "Frame mode",
description = "When to use Frame / Fan mode",
items = frame_modes, default = 'NEVER',
update = update_sockets)
matching_modes = [
("LONG", "Match longest", "Make an iteration for each donor or recipient object - depending on which list is longer", 0),
("PERFACE", "Donor per face", "If there are many donor objects, match each donor object with corresponding recipient object face", 1)
]
matching_mode: EnumProperty(
name = "Matching",
description = "How to match list of recipient objects with list of donor objects",
items = matching_modes, default = "LONG",
update = updateNode)
join : BoolProperty(
name = "Join",
description = "Output one joined mesh",
default = False,
update = updateNode)
remove_doubles : BoolProperty(
name = "Remove doubles",
description = "Merge vertices at the same location",
default = False,
update = update_sockets)
threshold : FloatProperty(
name = "Threshold",
description = "Threshold for vertices to be considered as identical",
precision=4, min=0,
default = 1e-4,
update = updateNode)
tri_vert_idxs = [0, 1, 2]
quad_vert_idxs = [0, 1, 2, -1]
def sv_init(self, context):
self.inputs.new('SvVerticesSocket', "VersR")
self.inputs.new('SvStringsSocket', "PolsR")
self.inputs.new('SvVerticesSocket', "VersD")
self.inputs.new('SvStringsSocket', "PolsD")
self.inputs.new('SvStringsSocket', "FaceDataD")
self.inputs.new('SvStringsSocket', "W_Coef").prop_name = 'width_coef'
self.inputs.new('SvStringsSocket', "FrameWidth").prop_name = 'frame_width'
self.inputs.new('SvStringsSocket', "Z_Coef").prop_name = 'z_coef'
self.inputs.new('SvStringsSocket', "Z_Offset").prop_name = 'z_offset'
self.inputs.new('SvStringsSocket', "Z_Rotation").prop_name = 'z_rotation'
self.inputs.new('SvStringsSocket', "PolyRotation").prop_name = 'poly_rotation'
self.inputs.new('SvStringsSocket', "PolyMask")
self.inputs.new('SvStringsSocket', "Threshold").prop_name = 'threshold'
self.outputs.new('SvVerticesSocket', "Vertices")
self.outputs.new('SvStringsSocket', "Polygons")
self.outputs.new('SvStringsSocket', "FaceData")
self.outputs.new('SvStringsSocket', "VertRecptIdx")
self.outputs.new('SvStringsSocket', "FaceRecptIdx")
self.update_sockets(context)
def draw_buttons(self, context, layout):
layout.prop(self, "join")
if self.join:
layout.prop(self, "remove_doubles")
layout.prop(self, "matching_mode")
def draw_buttons_ext(self, context, layout):
self.draw_buttons(context, layout)
layout.label(text = "Normal axis:")
layout.prop(self, "normal_axis", expand=True)
layout.prop(self, "z_scale")
layout.prop(self, "normal_mode")
if self.normal_mode == 'MAP':
layout.prop(self, "normal_interp_mode")
layout.prop(self, "use_shell_factor")
layout.prop(self, "xy_mode")
layout.label(text="Bounding triangle:")
layout.prop(self, "tri_bound_mode", expand=True)
layout.prop(self, "frame_mode")
layout.prop(self, "map_mode")
layout.prop(self, "mask_mode")
layout.prop(self, "ngon_mode")
def get_triangle_directions(self):
"""
Three normal of unit triangle's edges.
This is not constant just because the normal can be X or Y or Z.
"""
if self.tri_bound_mode == 'EQUILATERAL':
triangle_direction_1 = Vector((cos_pi_6, sin_pi_6, 0))
triangle_direction_2 = Vector((-cos_pi_6, sin_pi_6, 0))
triangle_direction_3 = Vector((0, -1, 0))
else:
triangle_direction_1 = Vector((1, 1, 0))
triangle_direction_2 = Vector((-1, 1, 0))
triangle_direction_3 = Vector((0, -1, 0))
if self.normal_axis == 'X':
return triangle_direction_1.zxy, triangle_direction_2.zxy, triangle_direction_3.zxy
elif self.normal_axis == 'Y':
return triangle_direction_1.xzy, triangle_direction_2.xzy, triangle_direction_3.xzy
else:
return triangle_direction_1, triangle_direction_2, triangle_direction_3
def to2d(self, v):
"""
Convert vector to 2D.
Remove the coordinate which is responsible for normal axis.
"""
if self.normal_axis == 'X':
return v.yz
elif self.normal_axis == 'Y':
return v.xz
else:
return v.xy
def from2d(self, x, y):
"""
Make 3D vector from X and Y.
Add zero for the coordinate which is responsible for normal axis.
"""
if self.normal_axis == 'X':
return Vector((0, x, y))
elif self.normal_axis == 'Y':
return Vector((x, 0, y))
else:
return Vector((x, y, 0))
def bounding_triangle(self, vertices):
"""
Return three vertices of a triangle with equal sides / rectangular triangle,
which contains all provided vertices.
"""
X, Y = self.get_other_axes()
triangle_direction_1, triangle_direction_2, triangle_direction_3 = self.get_triangle_directions()
max_1 = self.to2d(max(vertices, key = lambda vertex: triangle_direction_1.dot(vertex)))
max_2 = self.to2d(max(vertices, key = lambda vertex: triangle_direction_2.dot(vertex)))
max_3 = self.to2d(min(vertices, key = lambda vertex: vertex[Y]))
side_1 = LineEquation2D.from_normal_and_point(self.to2d(triangle_direction_1), max_1)
side_2 = LineEquation2D.from_normal_and_point(self.to2d(triangle_direction_2), max_2)
side_3 = LineEquation2D.from_normal_and_point(self.to2d(triangle_direction_3), max_3)
p1 = side_2.intersect_with_line(side_3)
p2 = side_1.intersect_with_line(side_3)
p3 = side_1.intersect_with_line(side_2)
p1 = self.from2d(p1[0], p1[1])
p2 = self.from2d(p2[0], p2[1])
p3 = self.from2d(p3[0], p3[1])
return p1, p2, p3
def interpolate_quad_2d(self, dst_vert_1, dst_vert_2, dst_vert_3, dst_vert_4, v, x_coef, y_coef):
"""
Map the provided `v` vertex, considering only two of it's coordinates,
from the [-1/2; 1/2] x [-1/2; 1/2] square to the face defined by
four `dst_vert_n` vertices.
"""
X, Y = self.get_other_axes()
v12 = dst_vert_1 + (dst_vert_2-dst_vert_1)*v[X]*x_coef + ((dst_vert_2-dst_vert_1)/2)
v43 = dst_vert_4 + (dst_vert_3-dst_vert_4)*v[X]*x_coef + ((dst_vert_3-dst_vert_4)/2)
return v12 + (v43-v12)*v[Y]*y_coef + ((v43-v12)/2)
def interpolate_quad_3d(self, dst_vert_1, dst_vert_2, dst_vert_3, dst_vert_4, dst_normal_1, dst_normal_2, dst_normal_3, dst_normal_4, face_normal, v, x_coef, y_coef, z_coef, z_offset):
"""
Map the provided `v` vertex from the source
[-1/2; 1/2] x [-1/2; 1/2] x [-1/2; 1/2] cube
to the space defined by `dst_vert_n` vertices.
"""
loc = self.interpolate_quad_2d(dst_vert_1, dst_vert_2, dst_vert_3, dst_vert_4, v, x_coef, y_coef)
if self.normal_mode == 'MAP':
if self.normal_interp_mode == 'SMOOTH':
normal = self.interpolate_quad_2d(dst_normal_1, dst_normal_2, dst_normal_3, dst_normal_4, v, x_coef, y_coef)
normal.normalize()
else:
normal = self.interpolate_quad_2d(dst_vert_1 + dst_normal_1, dst_vert_2 + dst_normal_2,
dst_vert_3 + dst_normal_3, dst_vert_4 + dst_normal_4,
v, x_coef, y_coef)
normal = normal - loc
else:
#normal = (dst_vert_1.normal + dst_vert_2.normal + dst_vert_3.normal + dst_vert_4.normal) * 0.25
normal = face_normal
Z = self.normal_axis_idx()
return loc + normal*(v[Z]*z_coef + z_offset)
def interpolate_tri_2d(self, dst_vert_1, dst_vert_2, dst_vert_3, src_vert_1, src_vert_2, src_vert_3, v):
"""
Map the provided `v` vertex, considering only two of it's coordinates,
from the source triangle (defined by `src_vert_n` vertices) to the face defined by
three `dst_vert_n` vertices.
"""
X, Y = self.get_other_axes()
v = self.from2d(v[X], v[Y])
return barycentric_transform(v, src_vert_1, src_vert_2, src_vert_3,
dst_vert_1, dst_vert_2, dst_vert_3)
def interpolate_tri_3d(self, dst_vert_1, dst_vert_2, dst_vert_3, dst_normal_1, dst_normal_2, dst_normal_3, src_vert_1, src_vert_2, src_vert_3, face_normal, v, z_coef, z_offset):
"""
Map the provided `v` vertex from the source triangle
to the space defined by `dst_vert_n` vertices.
"""
v_at_triangle = self.interpolate_tri_2d(dst_vert_1, dst_vert_2, dst_vert_3,
src_vert_1, src_vert_2, src_vert_3, v)
if self.normal_mode == 'MAP':
if self.normal_interp_mode == 'SMOOTH':
normal = self.interpolate_tri_2d(dst_normal_1, dst_normal_2, dst_normal_3,
src_vert_1, src_vert_2, src_vert_3, v)
normal.normalize()
else:
normal = self.interpolate_tri_2d(dst_vert_1 + dst_normal_1, dst_vert_2 + dst_normal_2,
dst_vert_3 + dst_normal_3,
src_vert_1, src_vert_2, src_vert_3, v)
normal = normal - v_at_triangle
else:
#normal = (dst_vert_1.normal + dst_vert_2.normal + dst_vert_3.normal) * 0.333333333
normal = face_normal
Z = self.normal_axis_idx()
return v_at_triangle + normal * (v[Z] * z_coef + z_offset)
def get_other_axes(self):
if self.normal_axis == 'X':
return 1, 2
elif self.normal_axis == 'Y':
return 0, 2
else:
return 0, 1
def normal_axis_idx(self):
return "XYZ".index(self.normal_axis)
def map_bounds(self, min, max, x):
c = (min + max) / 2.0
k = 1.0 / (max - min)
return (x - c) * k
def rotate_z(self, verts, angle):
if abs(angle) < 1e-6:
return verts
projection = [self.to2d(v) for v in verts]
x0, y0 = center(projection)
c = self.from2d(x0, y0)
rot = Matrix.Rotation(angle, 4, self.normal_axis)
result = [(rot @ (v - c)) + c for v in verts]
return result
def calc_z_scale(self, dst_verts, src_verts):
src_lens = []
for v1, v2 in zip(src_verts, src_verts[1:]):
src_lens.append((v1 - v2).length)
src_lens.append((src_verts[-1] - src_verts[0]).length)
dst_lens = []
for v1, v2 in zip(dst_verts, dst_verts[1:]):
dst_lens.append((v1 - v2).length)
dst_lens.append((dst_verts[-1] - dst_verts[0]).length)
scales = [dst_len / src_len for src_len,dst_len in zip(src_lens, dst_lens) if abs(src_len) > 1e-6 and abs(dst_len) > 1e-6]
n = len(scales)
prod = reduce(lambda x,y: x*y, scales, 1.0)
return pow(prod, 1.0/n)
def _process_face(self, map_mode, output, recpt_face_data, donor, zcoef, zoffset, angle, wcoef, facerot):
X, Y = self.get_other_axes()
Z = self.normal_axis_idx()
#self.info(f"Face: {len(recpt_face_data.vertices_co)}, mode: {map_mode}")
if map_mode == 'ASIS':
# Leave this recipient's face as it was - as a single face.
verts = recpt_face_data.vertices_co[:]
n = len(verts)
output.verts_out.append(verts)
output.faces_out.append([list(range(n))])
output.vert_recpt_idx_out.append([recpt_face_data.index for i in verts])
output.face_recpt_idx_out.append([recpt_face_data.index for i in range(n)])
elif map_mode == 'TRI':
# Tris processing mode.
#
# As interpolate_tri_3d is based on barycentric_transform,
# here we do not have to manually map donor vertices to the
# unit triangle.
i0, i1, i2 = rotate_list(self.tri_vert_idxs, facerot)
if self.z_scale == 'AUTO':
zcoef = self.calc_z_scale(
[recpt_face_data.vertices_co[i0],
recpt_face_data.vertices_co[i1],
recpt_face_data.vertices_co[i2]],
[donor.tri_vert_1/wcoef, donor.tri_vert_2/wcoef, donor.tri_vert_3/wcoef]
) * zcoef
new_verts = []
for v in donor.verts_v:
new_verts.append(self.interpolate_tri_3d(
recpt_face_data.vertices_co[i0],
recpt_face_data.vertices_co[i1],
recpt_face_data.vertices_co[i2],
recpt_face_data.vertices_normal[i0],
recpt_face_data.vertices_normal[i1],
recpt_face_data.vertices_normal[i2],
donor.tri_vert_1/wcoef, donor.tri_vert_2/wcoef, donor.tri_vert_3/wcoef,
recpt_face_data.normal,
v, zcoef, zoffset))
output.verts_out.append(new_verts)
output.faces_out.append(donor.faces_i)
output.face_data_out.append(donor.face_data_i)
output.vert_recpt_idx_out.append([recpt_face_data.index for i in new_verts])
output.face_recpt_idx_out.append([recpt_face_data.index for i in donor.faces_i])
elif map_mode == 'QUAD':
# Quads processing mode.
#
# It can process Tris, but it will look strange:
# triangle will be processed as degenerated Quad,
# where third and fourth vertices coincide.
# In Tissue addon, this is the only mode possible for Quads.
# Someone may like that behaviour, so we allow it with setting...
#
# This can process NGons in even worse way:
# it will take first three vertices and the last one
# and consider that as a Quad.
i0, i1, i2, i3 = rotate_list(self.quad_vert_idxs, facerot)
if self.z_scale == 'AUTO':
corner1 = self.from2d(donor.min_x, donor.min_y)
corner2 = self.from2d(donor.min_x, donor.max_y)
corner3 = self.from2d(donor.max_x, donor.max_y)
corner4 = self.from2d(donor.max_x, donor.min_y)
zcoef = self.calc_z_scale(
[recpt_face_data.vertices_co[i0],
recpt_face_data.vertices_co[i1],
recpt_face_data.vertices_co[i2],
recpt_face_data.vertices_co[i3]],
[corner1, corner2, corner3, corner4]
) * zcoef
new_verts = []
#self.info("Donor: %s", len(donor.verts_v))
for v in donor.verts_v:
if self.xy_mode == 'BOUNDS':
# Map the `v` vertex's X, Y coordinates
# from it's bounding square to
# [-1/2; 1/2] square.
# Leave Z coordinate as it was.
x = self.map_bounds(donor.min_x, donor.max_x, v[X])
y = self.map_bounds(donor.min_y, donor.max_y, v[Y])
z = v[Z]
v = Vector((0, 0, 0))
v[X] = x
v[Y] = y
v[Z] = z
new_verts.append(self.interpolate_quad_3d(
recpt_face_data.vertices_co[i0],
recpt_face_data.vertices_co[i1],
recpt_face_data.vertices_co[i2],
recpt_face_data.vertices_co[i3],
recpt_face_data.vertices_normal[i0],
recpt_face_data.vertices_normal[i1],
recpt_face_data.vertices_normal[i2],
recpt_face_data.vertices_normal[i3],
recpt_face_data.normal,
v,
wcoef, wcoef,
zcoef, zoffset))
output.verts_out.append(new_verts)
output.faces_out.append(donor.faces_i)
output.face_data_out.append(donor.face_data_i)
output.vert_recpt_idx_out.append([recpt_face_data.index for i in new_verts])
output.face_recpt_idx_out.append([recpt_face_data.index for i in donor.faces_i])
elif map_mode == 'FRAME':
is_fan = abs(recpt_face_data.frame_width - 1.0) < 1e-6
n = len(recpt_face_data.vertices_co)
if self.map_mode == 'QUADS':
sub_map_mode = 'QUAD'
else:
if is_fan:
sub_map_mode = 'TRI'
else:
sub_map_mode = 'QUAD'
if is_fan:
tri_faces = [(recpt_face_data.vertices_co[i],
recpt_face_data.vertices_co[i+1],
recpt_face_data.center) for i in range(n-1)]
tri_faces.append((recpt_face_data.vertices_co[-1],
recpt_face_data.vertices_co[0],
recpt_face_data.center))
if self.use_shell_factor:
face_normal = sum(recpt_face_data.vertices_normal, Vector()) / n
else:
face_normal = recpt_face_data.normal
tri_normals = [(recpt_face_data.vertices_normal[i],
recpt_face_data.vertices_normal[i+1],
face_normal) for i in range(n-1)]
tri_normals.append((recpt_face_data.vertices_normal[-1],
recpt_face_data.vertices_normal[0],
face_normal))
for tri_face, tri_normal in zip(tri_faces, tri_normals):
sub_recpt = recpt_face_data.copy()
sub_recpt.vertices_co = tri_face
sub_recpt.vertices_normal = tri_normal
sub_recpt.vertices_idxs = [0, 1, 2]
self._process_face(sub_map_mode, output, sub_recpt, donor, zcoef, zoffset, angle, wcoef, facerot)
else:
inner_verts = [vert.lerp(recpt_face_data.center, recpt_face_data.frame_width)
for vert in recpt_face_data.vertices_co]
if self.use_shell_factor:
inner_normals = [normal.lerp(recpt_face_data.normal, recpt_face_data.frame_width)
for normal in recpt_face_data.vertices_normal]
else:
face_normal = sum(recpt_face_data.vertices_normal, Vector()) / n
inner_normals = [normal.lerp(face_normal, recpt_face_data.frame_width)
for normal in recpt_face_data.vertices_normal]
quad_faces = [(recpt_face_data.vertices_co[i],
recpt_face_data.vertices_co[i+1],
inner_verts[i+1], inner_verts[i])
for i in range(n-1)]
quad_faces.append((recpt_face_data.vertices_co[-1],
recpt_face_data.vertices_co[0],
inner_verts[0], inner_verts[-1]))
quad_normals = [(recpt_face_data.vertices_normal[i],
recpt_face_data.vertices_normal[i+1],
inner_normals[i+1], inner_normals[i])
for i in range(n-1)]
quad_normals.append((recpt_face_data.vertices_normal[-1],
recpt_face_data.vertices_normal[0],
inner_normals[0], inner_normals[-1]))
for quad_face, quad_normal in zip(quad_faces, quad_normals):
sub_recpt = recpt_face_data.copy()
sub_recpt.vertices_co = quad_face
sub_recpt.vertices_normal = quad_normal
sub_recpt.vertices_idxs = [0, 1, 2, 3]
self._process_face(sub_map_mode, output, sub_recpt, donor, zcoef, zoffset, angle, wcoef, facerot)
def _process(self, verts_recpt, faces_recpt, verts_donor, faces_donor, face_data_donor, frame_widths, zcoefs, zoffsets, zrotations, wcoefs, facerots, mask):
bm = bmesh_from_pydata(verts_recpt, [], faces_recpt, normal_update=True)
bm.verts.ensure_lookup_table()
single_donor = self.matching_mode == 'LONG'
frame_level = get_data_nesting_level(frame_widths)
if single_donor:
# Original (unrotated) donor vertices
donor_verts_o = [Vector(v) for v in verts_donor]
verts_donor = [verts_donor]
faces_donor = [faces_donor]
face_data_donor = [face_data_donor]
if frame_level == 0:
frame_widths = [frame_widths]
n_faces_recpt = len(faces_recpt)
fullList(verts_donor, n_faces_recpt)
fullList(faces_donor, n_faces_recpt)
fullList(face_data_donor, n_faces_recpt)
fullList(frame_widths, n_faces_recpt)
X, Y = self.get_other_axes()
Z = self.normal_axis_idx()
donor = DonorData()
# Vertices of the unit triangle.
# In case xy_mode != BOUNDS, we will never
# have to recalculate these.
if self.tri_bound_mode == 'EQUILATERAL':
donor.tri_vert_1 = self.from2d(-0.5, -sqrt_3_6)
donor.tri_vert_2 = self.from2d(0.5, -sqrt_3_6)
donor.tri_vert_3 = self.from2d(0, sqrt_3_3)
else:
donor.tri_vert_1 = self.from2d(-1, 0)
donor.tri_vert_2 = self.from2d(1, 0)
donor.tri_vert_3 = self.from2d(0, 1)
if single_donor:
# We will be rotating the donor object around Z axis,
# so it's size along Z is not going to change.
z_size = diameter(donor_verts_o, Z)
output = OutputData()
prev_angle = None
face_data = zip(faces_recpt, bm.faces, frame_widths, verts_donor, faces_donor, face_data_donor, zcoefs, zoffsets, zrotations, wcoefs, facerots, mask)
recpt_face_idx = 0
for recpt_face, recpt_face_bm, frame_width, donor_verts_i, donor_faces_i, donor_face_data_i, zcoef, zoffset, angle, wcoef, facerot, m in face_data:
recpt_face_data = RecptFaceData()
recpt_face_data.index = recpt_face_idx
recpt_face_data.normal = recpt_face_bm.normal
recpt_face_data.center = recpt_face_bm.calc_center_median()
recpt_face_data.vertices_co = [bm.verts[i].co for i in recpt_face]
if self.use_shell_factor:
recpt_face_data.vertices_normal = [bm.verts[i].normal * bm.verts[i].calc_shell_factor() for i in recpt_face]
else:
recpt_face_data.vertices_normal = [bm.verts[i].normal for i in recpt_face]
recpt_face_data.vertices_idxs = recpt_face[:]
if not isinstance(frame_width, (int, float)):
raise Exception(f"Unexpected data type for frame_width: {frame_width}")
recpt_face_data.frame_width = frame_width
donor.faces_i = donor_faces_i
donor.face_data_i = donor_face_data_i
if not single_donor:
# Original (unrotated) donor vertices
donor_verts_o = [Vector(v) for v in donor_verts_i]
z_size = diameter(donor_verts_o, Z)
# We have to recalculate rotated vertices only if
# the rotation angle have changed.
if prev_angle is None or angle != prev_angle or not single_donor:
donor.verts_v = self.rotate_z(donor_verts_o, angle)
if self.xy_mode == 'BOUNDS' or self.z_scale == 'AUTO' :
donor.max_x = max(v[X] for v in donor.verts_v)
donor.min_x = min(v[X] for v in donor.verts_v)
donor.max_y = max(v[Y] for v in donor.verts_v)
donor.min_y = min(v[Y] for v in donor.verts_v)
if self.xy_mode == 'BOUNDS':
donor.tri_vert_1, donor.tri_vert_2, donor.tri_vert_3 = self.bounding_triangle(donor.verts_v)
prev_angle = angle
if self.z_scale == 'CONST':
if abs(z_size) < 1e-6:
zcoef = 0
else:
zcoef = zcoef / z_size
# Define TRI/QUAD mode based on node settings.
n = len(recpt_face)
if not m:
map_mode = self.mask_mode
else:
if n == 3:
if self.frame_mode == 'ALWAYS':
map_mode = 'FRAME'
else:
if self.map_mode == 'QUADTRI':
map_mode = 'TRI'
else: # self.map_mode == 'QUADS':
map_mode = 'QUAD'
elif n == 4:
if self.frame_mode in ['ALWAYS', 'NGONQUAD']:
map_mode = 'FRAME'
else:
map_mode = 'QUAD'
else:
if self.frame_mode in ['ALWAYS', 'NGONQUAD', 'NGONS']:
map_mode = 'FRAME'
else:
if self.ngon_mode == 'QUADS':
map_mode = 'QUAD'
elif self.ngon_mode == 'ASIS':
map_mode = 'ASIS'
else:
map_mode = 'SKIP'
if map_mode == 'SKIP':
# Skip this recipient's face - do not produce any vertices/faces for it
continue
self._process_face(map_mode, output, recpt_face_data, donor, zcoef, zoffset, angle, wcoef, facerot)
recpt_face_idx += 1
bm.free()
return output
def process(self):
if not any(output.is_linked for output in self.outputs):
return
verts_recpt_s = self.inputs['VersR'].sv_get(deepcopy=False)
faces_recpt_s = self.inputs['PolsR'].sv_get(default=[[]], deepcopy=False)
verts_donor_s = self.inputs['VersD'].sv_get()
faces_donor_s = self.inputs['PolsD'].sv_get()
if 'FaceDataD' in self.inputs:
face_data_donor_s = self.inputs['FaceDataD'].sv_get(default=[[]])
else:
face_data_donor_s = [[]]
zcoefs_s = self.inputs['Z_Coef'].sv_get(deepcopy=False)
zoffsets_s = self.inputs['Z_Offset'].sv_get(deepcopy=False)
zrotations_s = self.inputs['Z_Rotation'].sv_get(deepcopy=False)
wcoefs_s = self.inputs['W_Coef'].sv_get(deepcopy=False)
if 'FrameWidth' in self.inputs:
frame_widths_s = self.inputs['FrameWidth'].sv_get(deepcopy=True)
else:
frame_widths_s = [[0.5]]
if 'PolyRotation' in self.inputs:
facerots_s = self.inputs['PolyRotation'].sv_get(default = [[0]], deepcopy=False)
else:
facerots_s = [[0]]
mask_s = self.inputs['PolyMask'].sv_get(default = [[1]], deepcopy=False)
if 'Threshold' in self.inputs:
thresholds_s = self.inputs['Threshold'].sv_get()
else:
thresholds_s = [[self.threshold]]
output = OutputData()
if self.matching_mode == 'PERFACE':
verts_donor_s = [verts_donor_s]
faces_donor_s = [faces_donor_s]
face_data_donor_s = [face_data_donor_s]
#self.info("FW: %s", frame_widths_s)
#frame_widths_s = [frame_widths_s]
objects = match_long_repeat([verts_recpt_s, faces_recpt_s, verts_donor_s, faces_donor_s, face_data_donor_s, frame_widths_s, zcoefs_s, zoffsets_s, zrotations_s, wcoefs_s, facerots_s, mask_s, thresholds_s])
#self.info("N objects: %s", len(list(zip(*objects))))
for verts_recpt, faces_recpt, verts_donor, faces_donor, face_data_donor, frame_widths, zcoefs, zoffsets, zrotations, wcoefs, facerots, mask, threshold in zip(*objects):
n_faces_recpt = len(faces_recpt)
fullList(zcoefs, n_faces_recpt)
fullList(zoffsets, n_faces_recpt)
fullList(zrotations, n_faces_recpt)
if get_data_nesting_level(frame_widths) < 1:
frame_widths = [frame_widths]
fullList(frame_widths, n_faces_recpt)
fullList(wcoefs, n_faces_recpt)
fullList(facerots, n_faces_recpt)
mask = cycle_for_length(mask, n_faces_recpt)
if isinstance(threshold, (list, tuple)):
threshold = threshold[0]
new = self._process(verts_recpt, faces_recpt,
verts_donor, faces_donor,
face_data_donor,
frame_widths,
zcoefs, zoffsets, zrotations,
wcoefs, facerots, mask)
output.verts_out.extend(new.verts_out)
output.faces_out.extend(new.faces_out)
output.face_data_out.extend(new.face_data_out)
output.vert_recpt_idx_out.extend(new.vert_recpt_idx_out)
output.face_recpt_idx_out.extend(new.face_recpt_idx_out)
output.verts_out = Vector_degenerate(output.verts_out)
if self.join:
output.verts_out, _, output.faces_out = mesh_join(output.verts_out, [], output.faces_out)
output.face_data_out = sum(output.face_data_out, [])
output.vert_recpt_idx_out = sum(output.vert_recpt_idx_out, [])
output.face_recpt_idx_out = sum(output.face_recpt_idx_out, [])
if self.remove_doubles:
doubles_res = remove_doubles(output.verts_out, [], output.faces_out, threshold, face_data=output.face_data_out, vert_data=output.vert_recpt_idx_out)
if len(doubles_res) == 4:
output.verts_out, _, output.faces_out, data_out = doubles_res
else:
output.verts_out, _, output.faces_out = doubles_res
data_out = dict()
output.vert_recpt_idx_out = data_out.get('verts', [])
if output.face_recpt_idx_out:
output.face_recpt_idx_out = [output.face_recpt_idx_out[idx] for idx in data_out['face_init_index']]
output.verts_out = [output.verts_out]
output.faces_out = [output.faces_out]
output.face_data_out = [output.face_data_out]
output.vert_recpt_idx_out = [output.vert_recpt_idx_out]
output.face_recpt_idx_out = [output.face_recpt_idx_out]
self.outputs['Vertices'].sv_set(output.verts_out)
self.outputs['Polygons'].sv_set(output.faces_out)
if 'FaceData' in self.outputs:
self.outputs['FaceData'].sv_set(output.face_data_out)
if 'VertRecptIdx' in self.outputs:
self.outputs['VertRecptIdx'].sv_set(output.vert_recpt_idx_out)
if 'FaceRecptIdx' in self.outputs:
self.outputs['FaceRecptIdx'].sv_set(output.face_recpt_idx_out)
def register():
bpy.utils.register_class(SvAdaptivePolygonsNodeMk2)
def unregister():
bpy.utils.unregister_class(SvAdaptivePolygonsNodeMk2)