-
Notifications
You must be signed in to change notification settings - Fork 30.4k
/
Copy pathnode_platform.cc
659 lines (563 loc) Β· 20.7 KB
/
node_platform.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
#include "node_platform.h"
#include "node_internals.h"
#include "env-inl.h"
#include "debug_utils-inl.h"
#include <algorithm> // find_if(), find(), move()
#include <cmath> // llround()
#include <memory> // unique_ptr(), shared_ptr(), make_shared()
namespace node {
using v8::Isolate;
using v8::Object;
using v8::Platform;
using v8::Task;
namespace {
struct PlatformWorkerData {
TaskQueue<Task>* task_queue;
Mutex* platform_workers_mutex;
ConditionVariable* platform_workers_ready;
int* pending_platform_workers;
int id;
};
static void PlatformWorkerThread(void* data) {
std::unique_ptr<PlatformWorkerData>
worker_data(static_cast<PlatformWorkerData*>(data));
TaskQueue<Task>* pending_worker_tasks = worker_data->task_queue;
TRACE_EVENT_METADATA1("__metadata", "thread_name", "name",
"PlatformWorkerThread");
// Notify the main thread that the platform worker is ready.
{
Mutex::ScopedLock lock(*worker_data->platform_workers_mutex);
(*worker_data->pending_platform_workers)--;
worker_data->platform_workers_ready->Signal(lock);
}
while (std::unique_ptr<Task> task = pending_worker_tasks->BlockingPop()) {
task->Run();
pending_worker_tasks->NotifyOfCompletion();
}
}
static int GetActualThreadPoolSize(int thread_pool_size) {
if (thread_pool_size < 1) {
thread_pool_size = uv_available_parallelism() - 1;
}
return std::max(thread_pool_size, 1);
}
} // namespace
class WorkerThreadsTaskRunner::DelayedTaskScheduler {
public:
explicit DelayedTaskScheduler(TaskQueue<Task>* tasks)
: pending_worker_tasks_(tasks) {}
std::unique_ptr<uv_thread_t> Start() {
auto start_thread = [](void* data) {
static_cast<DelayedTaskScheduler*>(data)->Run();
};
std::unique_ptr<uv_thread_t> t { new uv_thread_t() };
uv_sem_init(&ready_, 0);
CHECK_EQ(0, uv_thread_create(t.get(), start_thread, this));
uv_sem_wait(&ready_);
uv_sem_destroy(&ready_);
return t;
}
void PostDelayedTask(std::unique_ptr<Task> task, double delay_in_seconds) {
tasks_.Push(std::make_unique<ScheduleTask>(this, std::move(task),
delay_in_seconds));
uv_async_send(&flush_tasks_);
}
void Stop() {
tasks_.Push(std::make_unique<StopTask>(this));
uv_async_send(&flush_tasks_);
}
private:
void Run() {
TRACE_EVENT_METADATA1("__metadata", "thread_name", "name",
"WorkerThreadsTaskRunner::DelayedTaskScheduler");
loop_.data = this;
CHECK_EQ(0, uv_loop_init(&loop_));
flush_tasks_.data = this;
CHECK_EQ(0, uv_async_init(&loop_, &flush_tasks_, FlushTasks));
uv_sem_post(&ready_);
uv_run(&loop_, UV_RUN_DEFAULT);
CheckedUvLoopClose(&loop_);
}
static void FlushTasks(uv_async_t* flush_tasks) {
DelayedTaskScheduler* scheduler =
ContainerOf(&DelayedTaskScheduler::loop_, flush_tasks->loop);
while (std::unique_ptr<Task> task = scheduler->tasks_.Pop())
task->Run();
}
class StopTask : public Task {
public:
explicit StopTask(DelayedTaskScheduler* scheduler): scheduler_(scheduler) {}
void Run() override {
std::vector<uv_timer_t*> timers;
for (uv_timer_t* timer : scheduler_->timers_)
timers.push_back(timer);
for (uv_timer_t* timer : timers)
scheduler_->TakeTimerTask(timer);
uv_close(reinterpret_cast<uv_handle_t*>(&scheduler_->flush_tasks_),
[](uv_handle_t* handle) {});
}
private:
DelayedTaskScheduler* scheduler_;
};
class ScheduleTask : public Task {
public:
ScheduleTask(DelayedTaskScheduler* scheduler,
std::unique_ptr<Task> task,
double delay_in_seconds)
: scheduler_(scheduler),
task_(std::move(task)),
delay_in_seconds_(delay_in_seconds) {}
void Run() override {
uint64_t delay_millis = llround(delay_in_seconds_ * 1000);
std::unique_ptr<uv_timer_t> timer(new uv_timer_t());
CHECK_EQ(0, uv_timer_init(&scheduler_->loop_, timer.get()));
timer->data = task_.release();
CHECK_EQ(0, uv_timer_start(timer.get(), RunTask, delay_millis, 0));
scheduler_->timers_.insert(timer.release());
}
private:
DelayedTaskScheduler* scheduler_;
std::unique_ptr<Task> task_;
double delay_in_seconds_;
};
static void RunTask(uv_timer_t* timer) {
DelayedTaskScheduler* scheduler =
ContainerOf(&DelayedTaskScheduler::loop_, timer->loop);
scheduler->pending_worker_tasks_->Push(scheduler->TakeTimerTask(timer));
}
std::unique_ptr<Task> TakeTimerTask(uv_timer_t* timer) {
std::unique_ptr<Task> task(static_cast<Task*>(timer->data));
uv_timer_stop(timer);
uv_close(reinterpret_cast<uv_handle_t*>(timer), [](uv_handle_t* handle) {
delete reinterpret_cast<uv_timer_t*>(handle);
});
timers_.erase(timer);
return task;
}
uv_sem_t ready_;
TaskQueue<Task>* pending_worker_tasks_;
TaskQueue<Task> tasks_;
uv_loop_t loop_;
uv_async_t flush_tasks_;
std::unordered_set<uv_timer_t*> timers_;
};
WorkerThreadsTaskRunner::WorkerThreadsTaskRunner(int thread_pool_size) {
Mutex platform_workers_mutex;
ConditionVariable platform_workers_ready;
Mutex::ScopedLock lock(platform_workers_mutex);
int pending_platform_workers = thread_pool_size;
delayed_task_scheduler_ = std::make_unique<DelayedTaskScheduler>(
&pending_worker_tasks_);
threads_.push_back(delayed_task_scheduler_->Start());
for (int i = 0; i < thread_pool_size; i++) {
PlatformWorkerData* worker_data = new PlatformWorkerData{
&pending_worker_tasks_, &platform_workers_mutex,
&platform_workers_ready, &pending_platform_workers, i
};
std::unique_ptr<uv_thread_t> t { new uv_thread_t() };
if (uv_thread_create(t.get(), PlatformWorkerThread,
worker_data) != 0) {
break;
}
threads_.push_back(std::move(t));
}
// Wait for platform workers to initialize before continuing with the
// bootstrap.
while (pending_platform_workers > 0) {
platform_workers_ready.Wait(lock);
}
}
void WorkerThreadsTaskRunner::PostTask(std::unique_ptr<Task> task) {
pending_worker_tasks_.Push(std::move(task));
}
void WorkerThreadsTaskRunner::PostDelayedTask(std::unique_ptr<Task> task,
double delay_in_seconds) {
delayed_task_scheduler_->PostDelayedTask(std::move(task), delay_in_seconds);
}
void WorkerThreadsTaskRunner::BlockingDrain() {
pending_worker_tasks_.BlockingDrain();
}
void WorkerThreadsTaskRunner::Shutdown() {
pending_worker_tasks_.Stop();
delayed_task_scheduler_->Stop();
for (size_t i = 0; i < threads_.size(); i++) {
CHECK_EQ(0, uv_thread_join(threads_[i].get()));
}
}
int WorkerThreadsTaskRunner::NumberOfWorkerThreads() const {
return threads_.size();
}
PerIsolatePlatformData::PerIsolatePlatformData(
Isolate* isolate, uv_loop_t* loop)
: isolate_(isolate), loop_(loop) {
flush_tasks_ = new uv_async_t();
CHECK_EQ(0, uv_async_init(loop, flush_tasks_, FlushTasks));
flush_tasks_->data = static_cast<void*>(this);
uv_unref(reinterpret_cast<uv_handle_t*>(flush_tasks_));
}
std::shared_ptr<v8::TaskRunner>
PerIsolatePlatformData::GetForegroundTaskRunner() {
return shared_from_this();
}
void PerIsolatePlatformData::FlushTasks(uv_async_t* handle) {
auto platform_data = static_cast<PerIsolatePlatformData*>(handle->data);
platform_data->FlushForegroundTasksInternal();
}
void PerIsolatePlatformData::PostIdleTaskImpl(
std::unique_ptr<v8::IdleTask> task, const v8::SourceLocation& location) {
UNREACHABLE();
}
void PerIsolatePlatformData::PostTaskImpl(std::unique_ptr<Task> task,
const v8::SourceLocation& location) {
if (flush_tasks_ == nullptr) {
// V8 may post tasks during Isolate disposal. In that case, the only
// sensible path forward is to discard the task.
return;
}
foreground_tasks_.Push(std::move(task));
uv_async_send(flush_tasks_);
}
void PerIsolatePlatformData::PostDelayedTaskImpl(
std::unique_ptr<Task> task,
double delay_in_seconds,
const v8::SourceLocation& location) {
if (flush_tasks_ == nullptr) {
// V8 may post tasks during Isolate disposal. In that case, the only
// sensible path forward is to discard the task.
return;
}
std::unique_ptr<DelayedTask> delayed(new DelayedTask());
delayed->task = std::move(task);
delayed->platform_data = shared_from_this();
delayed->timeout = delay_in_seconds;
foreground_delayed_tasks_.Push(std::move(delayed));
uv_async_send(flush_tasks_);
}
void PerIsolatePlatformData::PostNonNestableTaskImpl(
std::unique_ptr<Task> task, const v8::SourceLocation& location) {
PostTaskImpl(std::move(task), location);
}
void PerIsolatePlatformData::PostNonNestableDelayedTaskImpl(
std::unique_ptr<Task> task,
double delay_in_seconds,
const v8::SourceLocation& location) {
PostDelayedTaskImpl(std::move(task), delay_in_seconds, location);
}
PerIsolatePlatformData::~PerIsolatePlatformData() {
CHECK(!flush_tasks_);
}
void PerIsolatePlatformData::AddShutdownCallback(void (*callback)(void*),
void* data) {
shutdown_callbacks_.emplace_back(ShutdownCallback { callback, data });
}
void PerIsolatePlatformData::Shutdown() {
if (flush_tasks_ == nullptr)
return;
// While there should be no V8 tasks in the queues at this point, it is
// possible that Node.js-internal tasks from e.g. the inspector are still
// lying around. We clear these queues and ignore the return value,
// effectively deleting the tasks instead of running them.
foreground_delayed_tasks_.PopAll();
foreground_tasks_.PopAll();
scheduled_delayed_tasks_.clear();
// Both destroying the scheduled_delayed_tasks_ lists and closing
// flush_tasks_ handle add tasks to the event loop. We keep a count of all
// non-closed handles, and when that reaches zero, we inform any shutdown
// callbacks that the platform is done as far as this Isolate is concerned.
self_reference_ = shared_from_this();
uv_close(reinterpret_cast<uv_handle_t*>(flush_tasks_),
[](uv_handle_t* handle) {
std::unique_ptr<uv_async_t> flush_tasks {
reinterpret_cast<uv_async_t*>(handle) };
PerIsolatePlatformData* platform_data =
static_cast<PerIsolatePlatformData*>(flush_tasks->data);
platform_data->DecreaseHandleCount();
platform_data->self_reference_.reset();
});
flush_tasks_ = nullptr;
}
void PerIsolatePlatformData::DecreaseHandleCount() {
CHECK_GE(uv_handle_count_, 1);
if (--uv_handle_count_ == 0) {
for (const auto& callback : shutdown_callbacks_)
callback.cb(callback.data);
}
}
NodePlatform::NodePlatform(int thread_pool_size,
v8::TracingController* tracing_controller,
v8::PageAllocator* page_allocator) {
if (tracing_controller != nullptr) {
tracing_controller_ = tracing_controller;
} else {
tracing_controller_ = new v8::TracingController();
}
// V8 will default to its built in allocator if none is provided.
page_allocator_ = page_allocator;
// TODO(addaleax): It's a bit icky that we use global state here, but we can't
// really do anything about it unless V8 starts exposing a way to access the
// current v8::Platform instance.
SetTracingController(tracing_controller_);
DCHECK_EQ(GetTracingController(), tracing_controller_);
thread_pool_size = GetActualThreadPoolSize(thread_pool_size);
worker_thread_task_runner_ =
std::make_shared<WorkerThreadsTaskRunner>(thread_pool_size);
}
NodePlatform::~NodePlatform() {
Shutdown();
}
void NodePlatform::RegisterIsolate(Isolate* isolate, uv_loop_t* loop) {
Mutex::ScopedLock lock(per_isolate_mutex_);
auto delegate = std::make_shared<PerIsolatePlatformData>(isolate, loop);
IsolatePlatformDelegate* ptr = delegate.get();
auto insertion = per_isolate_.emplace(
isolate,
std::make_pair(ptr, std::move(delegate)));
CHECK(insertion.second);
}
void NodePlatform::RegisterIsolate(Isolate* isolate,
IsolatePlatformDelegate* delegate) {
Mutex::ScopedLock lock(per_isolate_mutex_);
auto insertion = per_isolate_.emplace(
isolate,
std::make_pair(delegate, std::shared_ptr<PerIsolatePlatformData>{}));
CHECK(insertion.second);
}
void NodePlatform::UnregisterIsolate(Isolate* isolate) {
Mutex::ScopedLock lock(per_isolate_mutex_);
auto existing_it = per_isolate_.find(isolate);
CHECK_NE(existing_it, per_isolate_.end());
auto& existing = existing_it->second;
if (existing.second) {
existing.second->Shutdown();
}
per_isolate_.erase(existing_it);
}
void NodePlatform::AddIsolateFinishedCallback(Isolate* isolate,
void (*cb)(void*), void* data) {
Mutex::ScopedLock lock(per_isolate_mutex_);
auto it = per_isolate_.find(isolate);
if (it == per_isolate_.end()) {
cb(data);
return;
}
CHECK(it->second.second);
it->second.second->AddShutdownCallback(cb, data);
}
void NodePlatform::Shutdown() {
if (has_shut_down_) return;
has_shut_down_ = true;
worker_thread_task_runner_->Shutdown();
{
Mutex::ScopedLock lock(per_isolate_mutex_);
per_isolate_.clear();
}
}
int NodePlatform::NumberOfWorkerThreads() {
return worker_thread_task_runner_->NumberOfWorkerThreads();
}
void PerIsolatePlatformData::RunForegroundTask(std::unique_ptr<Task> task) {
if (isolate_->IsExecutionTerminating()) return;
DebugSealHandleScope scope(isolate_);
Environment* env = Environment::GetCurrent(isolate_);
if (env != nullptr) {
v8::HandleScope scope(isolate_);
InternalCallbackScope cb_scope(env, Object::New(isolate_), { 0, 0 },
InternalCallbackScope::kNoFlags);
task->Run();
} else {
// When the Environment was freed, the tasks of the Isolate should also be
// canceled by `NodePlatform::UnregisterIsolate`. However, if the embedder
// request to run the foreground task after the Environment was freed, run
// the task without InternalCallbackScope.
// The task is moved out of InternalCallbackScope if env is not available.
// This is a required else block, and should not be removed.
// See comment: https://github.com/nodejs/node/pull/34688#pullrequestreview-463867489
task->Run();
}
}
void PerIsolatePlatformData::DeleteFromScheduledTasks(DelayedTask* task) {
auto it = std::find_if(scheduled_delayed_tasks_.begin(),
scheduled_delayed_tasks_.end(),
[task](const DelayedTaskPointer& delayed) -> bool {
return delayed.get() == task;
});
CHECK_NE(it, scheduled_delayed_tasks_.end());
scheduled_delayed_tasks_.erase(it);
}
void PerIsolatePlatformData::RunForegroundTask(uv_timer_t* handle) {
DelayedTask* delayed = ContainerOf(&DelayedTask::timer, handle);
delayed->platform_data->RunForegroundTask(std::move(delayed->task));
delayed->platform_data->DeleteFromScheduledTasks(delayed);
}
void NodePlatform::DrainTasks(Isolate* isolate) {
std::shared_ptr<PerIsolatePlatformData> per_isolate = ForNodeIsolate(isolate);
if (!per_isolate) return;
do {
// Worker tasks aren't associated with an Isolate.
worker_thread_task_runner_->BlockingDrain();
} while (per_isolate->FlushForegroundTasksInternal());
}
bool PerIsolatePlatformData::FlushForegroundTasksInternal() {
bool did_work = false;
while (std::unique_ptr<DelayedTask> delayed =
foreground_delayed_tasks_.Pop()) {
did_work = true;
uint64_t delay_millis = llround(delayed->timeout * 1000);
delayed->timer.data = static_cast<void*>(delayed.get());
uv_timer_init(loop_, &delayed->timer);
// Timers may not guarantee queue ordering of events with the same delay if
// the delay is non-zero. This should not be a problem in practice.
uv_timer_start(&delayed->timer, RunForegroundTask, delay_millis, 0);
uv_unref(reinterpret_cast<uv_handle_t*>(&delayed->timer));
uv_handle_count_++;
scheduled_delayed_tasks_.emplace_back(delayed.release(),
[](DelayedTask* delayed) {
uv_close(reinterpret_cast<uv_handle_t*>(&delayed->timer),
[](uv_handle_t* handle) {
std::unique_ptr<DelayedTask> task {
static_cast<DelayedTask*>(handle->data) };
task->platform_data->DecreaseHandleCount();
});
});
}
// Move all foreground tasks into a separate queue and flush that queue.
// This way tasks that are posted while flushing the queue will be run on the
// next call of FlushForegroundTasksInternal.
std::queue<std::unique_ptr<Task>> tasks = foreground_tasks_.PopAll();
while (!tasks.empty()) {
std::unique_ptr<Task> task = std::move(tasks.front());
tasks.pop();
did_work = true;
RunForegroundTask(std::move(task));
}
return did_work;
}
void NodePlatform::PostTaskOnWorkerThreadImpl(
v8::TaskPriority priority,
std::unique_ptr<v8::Task> task,
const v8::SourceLocation& location) {
worker_thread_task_runner_->PostTask(std::move(task));
}
void NodePlatform::PostDelayedTaskOnWorkerThreadImpl(
v8::TaskPriority priority,
std::unique_ptr<v8::Task> task,
double delay_in_seconds,
const v8::SourceLocation& location) {
worker_thread_task_runner_->PostDelayedTask(std::move(task),
delay_in_seconds);
}
IsolatePlatformDelegate* NodePlatform::ForIsolate(Isolate* isolate) {
Mutex::ScopedLock lock(per_isolate_mutex_);
auto data = per_isolate_[isolate];
CHECK_NOT_NULL(data.first);
return data.first;
}
std::shared_ptr<PerIsolatePlatformData>
NodePlatform::ForNodeIsolate(Isolate* isolate) {
Mutex::ScopedLock lock(per_isolate_mutex_);
auto data = per_isolate_[isolate];
CHECK_NOT_NULL(data.first);
return data.second;
}
bool NodePlatform::FlushForegroundTasks(Isolate* isolate) {
std::shared_ptr<PerIsolatePlatformData> per_isolate = ForNodeIsolate(isolate);
if (!per_isolate) return false;
return per_isolate->FlushForegroundTasksInternal();
}
std::unique_ptr<v8::JobHandle> NodePlatform::CreateJobImpl(
v8::TaskPriority priority,
std::unique_ptr<v8::JobTask> job_task,
const v8::SourceLocation& location) {
return v8::platform::NewDefaultJobHandle(
this, priority, std::move(job_task), NumberOfWorkerThreads());
}
bool NodePlatform::IdleTasksEnabled(Isolate* isolate) {
return ForIsolate(isolate)->IdleTasksEnabled();
}
std::shared_ptr<v8::TaskRunner>
NodePlatform::GetForegroundTaskRunner(Isolate* isolate) {
return ForIsolate(isolate)->GetForegroundTaskRunner();
}
double NodePlatform::MonotonicallyIncreasingTime() {
// Convert nanos to seconds.
return uv_hrtime() / 1e9;
}
double NodePlatform::CurrentClockTimeMillis() {
return SystemClockTimeMillis();
}
v8::TracingController* NodePlatform::GetTracingController() {
CHECK_NOT_NULL(tracing_controller_);
return tracing_controller_;
}
Platform::StackTracePrinter NodePlatform::GetStackTracePrinter() {
return []() {
fprintf(stderr, "\n");
DumpNativeBacktrace(stderr);
fflush(stderr);
};
}
v8::PageAllocator* NodePlatform::GetPageAllocator() {
return page_allocator_;
}
template <class T>
TaskQueue<T>::TaskQueue()
: lock_(), tasks_available_(), tasks_drained_(),
outstanding_tasks_(0), stopped_(false), task_queue_() { }
template <class T>
void TaskQueue<T>::Push(std::unique_ptr<T> task) {
Mutex::ScopedLock scoped_lock(lock_);
outstanding_tasks_++;
task_queue_.push(std::move(task));
tasks_available_.Signal(scoped_lock);
}
template <class T>
std::unique_ptr<T> TaskQueue<T>::Pop() {
Mutex::ScopedLock scoped_lock(lock_);
if (task_queue_.empty()) {
return std::unique_ptr<T>(nullptr);
}
std::unique_ptr<T> result = std::move(task_queue_.front());
task_queue_.pop();
return result;
}
template <class T>
std::unique_ptr<T> TaskQueue<T>::BlockingPop() {
Mutex::ScopedLock scoped_lock(lock_);
while (task_queue_.empty() && !stopped_) {
tasks_available_.Wait(scoped_lock);
}
if (stopped_) {
return std::unique_ptr<T>(nullptr);
}
std::unique_ptr<T> result = std::move(task_queue_.front());
task_queue_.pop();
return result;
}
template <class T>
void TaskQueue<T>::NotifyOfCompletion() {
Mutex::ScopedLock scoped_lock(lock_);
if (--outstanding_tasks_ == 0) {
tasks_drained_.Broadcast(scoped_lock);
}
}
template <class T>
void TaskQueue<T>::BlockingDrain() {
Mutex::ScopedLock scoped_lock(lock_);
while (outstanding_tasks_ > 0) {
tasks_drained_.Wait(scoped_lock);
}
}
template <class T>
void TaskQueue<T>::Stop() {
Mutex::ScopedLock scoped_lock(lock_);
stopped_ = true;
tasks_available_.Broadcast(scoped_lock);
}
template <class T>
std::queue<std::unique_ptr<T>> TaskQueue<T>::PopAll() {
Mutex::ScopedLock scoped_lock(lock_);
std::queue<std::unique_ptr<T>> result;
result.swap(task_queue_);
return result;
}
} // namespace node