-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathbenchmark_helper.py
332 lines (276 loc) · 13.6 KB
/
benchmark_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
import os
import sys
import csv
import numpy
import time
import timeit
from datetime import datetime
import argparse
import logging
import coloredlogs
import torch
import onnx
from enum import Enum
from packaging import version
logger = logging.getLogger(__name__)
class Precision(Enum):
FLOAT32 = 'fp32'
FLOAT16 = 'fp16'
INT8 = 'int8'
def __str__(self):
return self.value
IO_BINDING_DATA_TYPE_MAP = {
"float32": numpy.float32,
# TODO: Add more.
}
def create_onnxruntime_session(onnx_model_path,
use_gpu,
enable_all_optimization=True,
num_threads=-1,
enable_profiling=False,
verbose=False):
session = None
try:
from onnxruntime import SessionOptions, InferenceSession, GraphOptimizationLevel, __version__ as onnxruntime_version
sess_options = SessionOptions()
if enable_all_optimization:
sess_options.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
else:
sess_options.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_BASIC
if enable_profiling:
sess_options.enable_profiling = True
if num_threads > 0:
sess_options.intra_op_num_threads = num_threads
logger.debug(f"Session option: intra_op_num_threads={sess_options.intra_op_num_threads}")
if verbose:
sess_options.log_severity_level = 0
else:
sess_options.log_severity_level = 4
logger.debug(f"Create session for onnx model: {onnx_model_path}")
execution_providers = ['CPUExecutionProvider'
] if not use_gpu else ['CUDAExecutionProvider', 'CPUExecutionProvider']
session = InferenceSession(onnx_model_path, sess_options, providers=execution_providers)
except:
logger.error(f"Exception", exc_info=True)
return session
def setup_logger(verbose=True):
if verbose:
coloredlogs.install(level='DEBUG', fmt='[%(filename)s:%(lineno)s - %(funcName)20s()] %(message)s')
else:
coloredlogs.install(fmt='%(message)s')
logging.getLogger("transformers").setLevel(logging.WARNING)
def prepare_environment(cache_dir, output_dir, use_gpu):
if cache_dir and not os.path.exists(cache_dir):
os.makedirs(cache_dir)
if output_dir and not os.path.exists(output_dir):
os.makedirs(output_dir)
import onnxruntime
if use_gpu:
assert 'CUDAExecutionProvider' in onnxruntime.get_available_providers(
), "Please install onnxruntime-gpu package to test GPU inference."
import transformers
logger.info(f'PyTorch Version:{torch.__version__}')
logger.info(f'Transformers Version:{transformers.__version__}')
logger.info(f'Onnxruntime Version:{onnxruntime.__version__}')
# Support three major versions of PyTorch and OnnxRuntime, and up to 6 months of transformers.
from packaging import version
assert version.parse(torch.__version__) >= version.parse('1.5.0')
assert version.parse(transformers.__version__) >= version.parse('3.0.0')
assert version.parse(onnxruntime.__version__) >= version.parse('1.4.0')
def get_latency_result(runtimes, batch_size):
latency_ms = sum(runtimes) / float(len(runtimes)) * 1000.0
latency_variance = numpy.var(runtimes, dtype=numpy.float64) * 1000.0
throughput = batch_size * (1000.0 / latency_ms)
return {
"test_times": len(runtimes),
"latency_variance": "{:.2f}".format(latency_variance),
"latency_90_percentile": "{:.2f}".format(numpy.percentile(runtimes, 90) * 1000.0),
"latency_95_percentile": "{:.2f}".format(numpy.percentile(runtimes, 95) * 1000.0),
"latency_99_percentile": "{:.2f}".format(numpy.percentile(runtimes, 99) * 1000.0),
"average_latency_ms": "{:.2f}".format(latency_ms),
"QPS": "{:.2f}".format(throughput),
}
def output_details(results, csv_filename):
with open(csv_filename, mode="a", newline='') as csv_file:
column_names = [
"engine", "version", "device", "precision", "optimizer", "io_binding", "model_name", "inputs", "threads",
"batch_size", "sequence_length", "datetime", "test_times", "QPS", "average_latency_ms", "latency_variance",
"latency_90_percentile", "latency_95_percentile", "latency_99_percentile"
]
csv_writer = csv.DictWriter(csv_file, fieldnames=column_names)
csv_writer.writeheader()
for result in results:
csv_writer.writerow(result)
logger.info(f"Detail results are saved to csv file: {csv_filename}")
def output_summary(results, csv_filename, args):
with open(csv_filename, mode="a", newline='') as csv_file:
header_names = [
"model_name", "inputs", "engine", "version", "device", "precision", "optimizer", "io_binding", "threads"
]
data_names = []
for batch_size in args.batch_sizes:
for sequence_length in args.sequence_lengths:
data_names.append(f"b{batch_size}_s{sequence_length}")
csv_writer = csv.DictWriter(csv_file, fieldnames=header_names + data_names)
csv_writer.writeheader()
for model_name in args.models:
for input_count in [1, 2, 3]:
for engine_name in args.engines:
for io_binding in [True, False, ""]:
for threads in args.num_threads:
row = {}
for result in results:
if result["model_name"] == model_name and result["inputs"] == input_count and result[
"engine"] == engine_name and result["io_binding"] == io_binding and result[
"threads"] == threads:
headers = {k: v for k, v in result.items() if k in header_names}
if not row:
row.update(headers)
row.update({k: "" for k in data_names})
else:
for k in header_names:
assert row[k] == headers[k]
b = result["batch_size"]
s = result["sequence_length"]
row[f"b{b}_s{s}"] = result["average_latency_ms"]
if row:
csv_writer.writerow(row)
logger.info(f"Summary results are saved to csv file: {csv_filename}")
def output_fusion_statistics(model_fusion_statistics, csv_filename):
from transformers import __version__ as transformers_version
with open(csv_filename, mode="a", newline='') as csv_file:
column_names = ["model_filename", "datetime", "transformers", "torch"] + list(
next(iter(model_fusion_statistics.values())).keys())
csv_writer = csv.DictWriter(csv_file, fieldnames=column_names)
csv_writer.writeheader()
for key in model_fusion_statistics.keys():
model_fusion_statistics[key]["datetime"] = str(datetime.now())
model_fusion_statistics[key]["transformers"] = transformers_version
model_fusion_statistics[key]["torch"] = torch.__version__
model_fusion_statistics[key]["model_filename"] = key
csv_writer.writerow(model_fusion_statistics[key])
logger.info(f"Fusion statistics is saved to csv file: {csv_filename}")
def inference_ort(ort_session, ort_inputs, result_template, repeat_times, batch_size):
result = {}
runtimes = timeit.repeat(lambda: ort_session.run(None, ort_inputs), number=1, repeat=repeat_times)
result.update(result_template)
result.update({"io_binding": False})
result.update(get_latency_result(runtimes, batch_size))
return result
def inference_ort_with_io_binding(ort_session,
ort_inputs,
result_template,
repeat_times,
ort_output_names,
ort_outputs,
output_buffers,
output_buffer_max_sizes,
batch_size,
device,
data_type=numpy.longlong):
result = {}
# Bind inputs and outputs to onnxruntime session
io_binding = ort_session.io_binding()
# Bind inputs to device
for name in ort_inputs.keys():
np_input = torch.from_numpy(ort_inputs[name]).to(device)
input_type = IO_BINDING_DATA_TYPE_MAP[str(ort_inputs[name].dtype)] if str(
ort_inputs[name].dtype) in IO_BINDING_DATA_TYPE_MAP else data_type
io_binding.bind_input(name, np_input.device.type, 0, input_type, np_input.shape, np_input.data_ptr())
# Bind outputs buffers with the sizes needed if not allocated already
if len(output_buffers) == 0:
allocateOutputBuffers(output_buffers, output_buffer_max_sizes, device)
for i in range(len(ort_output_names)):
io_binding.bind_output(ort_output_names[i], output_buffers[i].device.type, 0, numpy.float32,
ort_outputs[i].shape, output_buffers[i].data_ptr())
runtimes = timeit.repeat(lambda: ort_session.run_with_iobinding(io_binding), number=1, repeat=repeat_times)
result.update(result_template)
result.update({"io_binding": True})
result.update(get_latency_result(runtimes, batch_size))
return result
def allocateOutputBuffers(output_buffers, output_buffer_max_sizes, device):
# Allocate output tensors with the largest test size needed. So the allocated memory can be reused
# for each test run.
for i in output_buffer_max_sizes:
output_buffers.append(torch.empty(i, dtype=torch.float32, device=device))
def set_random_seed(seed=123):
"""Set random seed manully to get deterministic results"""
import random
random.seed(seed)
numpy.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
#torch.backends.cudnn.enabled = False
#torch.backends.cudnn.benchmark = False
#torch.backends.cudnn.deterministic = True
def measure_memory(is_gpu, func):
import os
import psutil
from time import sleep
class MemoryMonitor:
def __init__(self, keep_measuring=True):
self.keep_measuring = keep_measuring
def measure_cpu_usage(self):
max_usage = 0
while True:
max_usage = max(max_usage, psutil.Process(os.getpid()).memory_info().rss / 1024**2)
sleep(0.005) # 5ms
if not self.keep_measuring:
break
return max_usage
def measure_gpu_usage(self):
from py3nvml.py3nvml import nvmlInit, nvmlDeviceGetCount, nvmlDeviceGetHandleByIndex, \
nvmlDeviceGetMemoryInfo, nvmlDeviceGetName, nvmlShutdown, NVMLError
max_gpu_usage = []
gpu_name = []
try:
nvmlInit()
deviceCount = nvmlDeviceGetCount()
max_gpu_usage = [0 for i in range(deviceCount)]
gpu_name = [nvmlDeviceGetName(nvmlDeviceGetHandleByIndex(i)) for i in range(deviceCount)]
while True:
for i in range(deviceCount):
info = nvmlDeviceGetMemoryInfo(nvmlDeviceGetHandleByIndex(i))
max_gpu_usage[i] = max(max_gpu_usage[i], info.used / 1024**2)
sleep(0.005) # 5ms
if not self.keep_measuring:
break
nvmlShutdown()
return [{
"device_id": i,
"name": gpu_name[i],
"max_used_MB": max_gpu_usage[i]
} for i in range(deviceCount)]
except NVMLError as error:
if not self.silent:
self.logger.error("Error fetching GPU information using nvml: %s", error)
return None
monitor = MemoryMonitor(False)
memory_before_test = monitor.measure_gpu_usage() if is_gpu else monitor.measure_cpu_usage()
from concurrent.futures import ThreadPoolExecutor
with ThreadPoolExecutor() as executor:
monitor = MemoryMonitor()
mem_thread = executor.submit(monitor.measure_gpu_usage if is_gpu else monitor.measure_cpu_usage)
try:
fn_thread = executor.submit(func)
result = fn_thread.result()
finally:
monitor.keep_measuring = False
max_usage = mem_thread.result()
if is_gpu:
print(f"GPU memory usage: before={memory_before_test} peak={max_usage}")
if len(memory_before_test) >= 1 and len(max_usage) >= 1:
before = memory_before_test[0]["max_used_MB"]
after = max_usage[0]["max_used_MB"]
return after - before
else:
return None
else:
print(f"CPU memory usage: before={memory_before_test:.1f} MB, peak={max_usage:.1f} MB")
return max_usage - memory_before_test