-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpred.py
50 lines (37 loc) · 1.37 KB
/
pred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import argparse
import os
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
from transformers import BartTokenizer
from multitask_bart import BartForMultitaskLearning
from dataset import MultitaskDataset
def main():
device = 'cuda' if torch.cuda.is_available() else 'cpu'
parser = argparse.ArgumentParser()
parser.add_argument('data_dir')
parser.add_argument('output_dir')
args = parser.parse_args()
model = BartForMultitaskLearning.from_pretrained(args.output_dir).to(device)
tokenizer = BartTokenizer.from_pretrained('facebook/bart-large')
dataset = MultitaskDataset(['response'], tokenizer, args.data_dir, 'test', 64)
loader = DataLoader(dataset, batch_size=32)
model.eval()
outputs = []
for batch in tqdm(loader):
outs = model.generate(
input_ids=batch['source_ids'].to(device),
attention_mask=batch['source_mask'].to(device),
max_length=256,
num_beams=5,
no_repeat_ngram_size=3,
early_stopping=True,
task=batch['task'][0]
)
dec = [tokenizer.decode(ids, skip_special_tokens=True) for ids in outs]
outputs.extend(dec)
with open(os.path.join(args.output_dir, 'pred.txt'), 'w') as f:
for output in outputs:
f.write(output + '\n')
if __name__ == '__main__':
main()