-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathRAUNet.py
140 lines (116 loc) · 4.45 KB
/
RAUNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from torch import nn
from torchvision import models
import torch.nn.functional as F
class AAM(nn.Module):
def __init__(self, in_ch,out_ch):
super(AAM, self).__init__()
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.conv1 = nn.Sequential(
nn.Conv2d(in_ch, out_ch, 1, padding=0),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True))
self.conv2 = nn.Sequential(
nn.Conv2d(in_ch, out_ch, 1, padding=0),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True))
self.conv3 = nn.Sequential(
nn.Conv2d(out_ch, out_ch, 1, padding=0),
nn.Softmax(dim=1))
self.conv4 = nn.Sequential(
nn.Conv2d(in_ch, out_ch, 1, padding=0),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True))
def forward(self, input_high, input_low):
mid_high=self.global_pooling(input_high)
weight_high=self.conv1(mid_high)
mid_low = self.global_pooling(input_low)
weight_low = self.conv2(mid_low)
weight=self.conv3(weight_low+weight_high)
low = self.conv4(input_low)
return input_high+low.mul(weight)
class RAUNet(nn.Module):
def __init__(self, num_classes=1, num_channels=3, pretrained=True):
super().__init__()
assert num_channels == 3
self.w = 512
self.h = 640
self.num_classes = num_classes
filters = [64, 128, 256, 512]
resnet = models.resnet34(pretrained=pretrained)
# filters = [256, 512, 1024, 2048]
# resnet = models.resnet50(pretrained=pretrained)
self.firstconv = resnet.conv1
self.firstbn = resnet.bn1
self.firstrelu = resnet.relu
self.firstmaxpool = resnet.maxpool
self.encoder1 = resnet.layer1
self.encoder2 = resnet.layer2
self.encoder3 = resnet.layer3
self.encoder4 = resnet.layer4
# Decoder
self.decoder4 = DecoderBlockLinkNet(filters[3], filters[2])
self.decoder3 = DecoderBlockLinkNet(filters[2], filters[1])
self.decoder2 = DecoderBlockLinkNet(filters[1], filters[0])
self.decoder1 = DecoderBlockLinkNet(filters[0], filters[0])
self.gau3 = AAM(filters[2], filters[2]) #RAUNet
self.gau2 = AAM(filters[1], filters[1])
self.gau1 = AAM(filters[0], filters[0])
# Final Classifier
self.finaldeconv1 = nn.ConvTranspose2d(filters[0], 32, 3, stride=2)
self.finalrelu1 = nn.ReLU(inplace=True)
self.finalconv2 = nn.Conv2d(32, 32, 3)
self.finalrelu2 = nn.ReLU(inplace=True)
self.finalconv3 = nn.Conv2d(32, num_classes, 2, padding=1)
# noinspection PyCallingNonCallable
def forward(self, x):
# Encoder
x = self.firstconv(x)
x = self.firstbn(x)
x = self.firstrelu(x)
x = self.firstmaxpool(x)
e1 = self.encoder1(x)
e2 = self.encoder2(e1)
e3 = self.encoder3(e2)
e4 = self.encoder4(e3)
d4 = self.decoder4(e4)
b4 = self.gau3(d4, e3)
d3 = self.decoder3(b4)
b3 = self.gau2(d3, e2)
d2 = self.decoder2(b3)
b2 = self.gau1(d2, e1)
d1 = self.decoder1(b2)
# Final Classification
f1 = self.finaldeconv1(d1)
f2 = self.finalrelu1(f1)
f3 = self.finalconv2(f2)
f4 = self.finalrelu2(f3)
f5 = self.finalconv3(f4)
if self.num_classes > 1:
x_out = F.log_softmax(f5, dim=1)
else:
x_out = f5
return x_out
class DecoderBlockLinkNet(nn.Module):
def __init__(self, in_channels, n_filters):
super().__init__()
self.relu = nn.ReLU(inplace=True)
self.conv1 = nn.Conv2d(in_channels, in_channels // 4, 1)
self.norm1 = nn.BatchNorm2d(in_channels // 4)
# B, C/4, H, W -> B, C/4, 2 * H, 2 * W
self.deconv2 = nn.ConvTranspose2d(in_channels // 4, in_channels // 4, kernel_size=4,
stride=2, padding=1, output_padding=0)
self.norm2 = nn.BatchNorm2d(in_channels // 4)
# B, C/4, H, W -> B, C, H, W
self.conv3 = nn.Conv2d(in_channels // 4, n_filters, 1)
self.norm3 = nn.BatchNorm2d(n_filters)
def forward(self, x):
x = self.conv1(x)
x = self.norm1(x)
x = self.relu(x)
x = self.deconv2(x)
x = self.norm2(x)
x = self.relu(x)
x = self.conv3(x)
x = self.norm3(x)
x = self.relu(x)
return x