-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinterpolatingEdges.m
67 lines (44 loc) · 1.59 KB
/
interpolatingEdges.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
function [dirs,diff] = interpolatingEdges(mag_hist,LDir,RDir,rank,nBin,blank,points)
% dirs = optimal orientation at that points
% diff = diff between the optimal and the desired
% computing everything in vector and then converting into degrees
LDir = [1 tand(LDir)];
LDir = LDir./norm(LDir);
RDir = [1 tand(RDir)];
RDir = RDir./norm(RDir);
edges = linspace(0, 180, nBin + 1);
edgesBoundary = (edges(1:end-1) + edges(2:end)) / 2;
mag_hist = squeeze(mag_hist);
points = squeeze(points);
% top rank values
[~,ind]=sort(mag_hist,1,'descend');
top_rank = ind(1:rank,:);
top_rank = edgesBoundary(top_rank); % top 15 gradient orientations for all num_pts
for i=1:length(points)
% for each pt, linearly interpolate the LDir and RDir
t = (points(i,1) - points(1,1))/(points(end,1) - points(1,1));
desired_ori= LDir + t*(RDir-LDir);
if(blank(i)==0)
desired_ori=atand(desired_ori(2)/desired_ori(1)); % converting back to degrees
dirs(i) = desired_ori;
diff(i) = 0;
else
% find the closest among the top 15 values
% convert to vector
vec = [ones(rank,1) tand(top_rank(:,i))];
nom_vec = bsxfun(@(A,B)(sqrt(A.^2+B.^2)),vec(:,1),vec(:,2));
vec = [vec(:,1)./nom_vec vec(:,2)./nom_vec];
for k=1:rank
temp(k) = abs(dot(vec(k,:),desired_ori));
end
id = find(temp==max(temp));
% temp = abs(top_rank(:,i) - desired_ori);
% id = find(temp==min(temp));
if(numel(id) > 1)
id=id(1);
end
dirs(i) = top_rank(id,i);
diff(i) = (1-temp(id)); % weights - lower weights mean accurate values
end
end
end