-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDirectLinearTransformation.m
61 lines (54 loc) · 1.73 KB
/
DirectLinearTransformation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
function h = DirectLinearTransformation(p1,p2)
% Computes Direct Linear Transformation (DTL) algorithm
%
% Input:
% p1 and p2 are 2xN (or 3xN in homogeneous coordiantes) of
% correspondings corners.
%
% Output:
% h is an estimation of the projective transformation such that
% h * x_i= x'_i
%
%----------------------------------------------------------
%
% From
% Book: "Multiple View Geometry in Computer Vision",
% Authors: Hartley and Zisserman, 2006, [HaZ2006]
% Section: "The Direct Linear Transformation (DTL) algorithm"
% Chapter: 4
% Page: 89 and 109
%
%----------------------------------------------------------
% Author: Diego Cheda
% Affiliation: CVC - UAB
% Date: 03/06/2008
%----------------------------------------------------------
% Convert to homogeneous coordinates.
if (size(p1,1) ~= 3)
p1 = padarray(p1,[1 0],1,'post');
p2 = padarray(p2,[1 0],1,'post');
end
% Normalization
% Transform the image coordinates according to x^_i = Tx_i and x'^_i =
% T'x'_i where T and T' are normalizing transformation conssiting of a
% translation and scaling.
[p1,t1] = normalise2dpts(p1);
[p2,t2] = normalise2dpts(p2);
x2 = p2(1,:);
y2 = p2(2,:);
z2 = p2(3,:);
% Ah = 0
a = [];
for i=1:size(p1,2)
a = [a; zeros(3,1)' -z2(i)*p1(:,i)' y2(i)*p1(:,i)'; ...
z2(i)*p1(:,i)' zeros(3,1)' -x2(i)*p1(:,i)'];
%-y2*p1 x2*p1 zeros(1,3)
end
% Obtain the SVD of A. The unit singular vector corresponding to the
% smallest singular value is the solucion h. A = UDV' with D diagonal with
% positive entries, arranged in descending order down the diagonal, then h
% is the last column of V.
[u,d,v] = svd(a);
h = reshape(v(:,9),3,3)';
% Desnormalization
h = inv(t2) * h * t1;