-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
182 lines (170 loc) · 7.01 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#!/usr/bin/env python
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import argparse
# import numpy as np
# import sys
import rospy
import yaml
# import grpc
# import cv2
#
# from tritonclient.grpc import service_pb2, service_pb2_grpc
# import tritonclient.grpc.model_config_pb2 as mc
#
# from utils.preprocess import parse_model, model_dtype_to_np, requestGenerator, image_adjust
# from utils.postprocess import extract_boxes_triton, load_class_names
# from utils.ros_input import RealSenseNode
from communicator import RosInference, EvaluateInference
from communicator.channel import grpc_channel
from clients import Yolov5client, FCOS_client
FLAGS = None
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('-v',
'--verbose',
action="store_true",
required=False,
default=False,
help='Enable verbose output')
parser.add_argument('-a',
'--async',
dest="async_set",
action="store_true",
required=False,
default=False,
help='Use asynchronous inference API')
parser.add_argument('--streaming',
action="store_true",
required=False,
default=False,
help='Use streaming inference API')
parser.add_argument('-m',
'--model-name',
type=str,
required=False,
# choices=['YOLOv5n', 'FCOS', 'fcos_weed_detector'],
default="YOLOv5n",
help='Name of model')
parser.add_argument(
'-x',
'--model-version',
type=str,
required=False,
default="",
help='Version of model. Default is to use latest version.')
parser.add_argument('-b',
'--batch-size',
type=int,
required=False,
default=1,
help='Batch size. Default is 1.')
parser.add_argument('-c',
'--classes',
type=int,
required=False,
default=80,
help='Number of class results to report. Default is 1.')
parser.add_argument(
'-s',
'--scaling',
type=str,
choices=['NONE', 'INCEPTION', 'VGG', 'COCO'],
required=False,
default='COCO',
help='Type of scaling to apply to image pixels. Default is NONE.')
parser.add_argument(
'-i',
'--image-src',
type=str,
choices=['ros', 'local'],
required=False,
default='ros',
help='Source of input images to run inference on. Default is ROS image topic')
return parser.parse_args()
if __name__ == '__main__':
FLAGS = parse_args()
rospy.init_node('ros_infer_2D')
param_file = rospy.get_param('client_parameter_file', './data/client_parameter.yaml')
with open(param_file) as file:
param = yaml.load(file, Loader=yaml.FullLoader)
# define client
# if 'yolo' in FLAGS.model_name:
# client = Yolov5client()
# elif 'fcos' in FLAGS.model_name:
# client = FCOS_client()
# else:
# client = FCOS_client() # TODO DEBUG
client = Yolov5client()
# client = FCOS_client()
#define channel
channel = grpc_channel.GRPCChannel(param, FLAGS)
#define inference
inference = RosInference(channel, client)
inference.start_inference()
# evaluation = EvaluateInference(channel, client)
# evaluation.start_inference()
# # input_name, output_name, c, h, w, format, dtype = parse_model(
# # metadata_response, config_response.config)
# #
# # # Send requests of FLAGS.batch_size images. If the number of
# # # images isn't an exact multiple of FLAGS.batch_size then just
# # # start over with the first images until the batch is filled.
# # requests = []
# # responses = []
# # result_filenames = []
#
# # Send request
# #Todo : change the below loc (if else) into interfaces and implementations
# if FLAGS.streaming and not FLAGS.ros_topic:
# for response in grpc_stub.ModelStreamInfer(
# requestGenerator(input_name, output_name, c, h, w, format,
# dtype, FLAGS, result_filenames)):
# responses.append(response)
# elif FLAGS.image_src == 'ros':
# ros_node = RealSenseNode(grpc_stub,
# input_name,
# output_name,
# param,
# FLAGS,
# dtype,
# c, h, w)
# ros_node.start_inference()
# else:
# for request in requestGenerator(input_name, output_name, c, h, w,
# format, dtype, FLAGS, result_filenames):
# if not FLAGS.async_set:
# # requests.append(request)
# response = grpc_stub.ModelInfer(request)
# prediction = extract_boxes_triton(response)
# else:
# requests.append(grpc_stub.ModelInfer.future(request))
#
# # For async, retrieve results according to the send order
# if FLAGS.async_set:
# for request in requests:
# responses.append(request.result())
#