-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
168 lines (115 loc) · 5.81 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#!/usr/bin/env python
# coding: utf-8
# Import libraries
import pandas as pd
import numpy as np
import math
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error
import xgboost as xgb
import datetime
import pickle
import warnings
warnings.filterwarnings("ignore")
# Load data to dataframe
datafile = 'london_merged.csv'
df = pd.read_csv(datafile)
# Convert dtypes to save memory
df['weather_code'] = df['weather_code'].astype('uint8')
df['is_holiday'] = df['is_holiday'].astype('uint8')
df['is_weekend'] = df['is_weekend'].astype('uint8')
df['season'] = df['season'].astype('uint8')
df['t1'] = df['t1'].astype('float16')
df['t2'] = df['t2'].astype('float16')
df['hum'] = df['hum'].astype('float16')
df['wind_speed'] = df['wind_speed'].astype('float16')
# Sort data according to timestamp
df['timestamp'] = pd.to_datetime(df['timestamp'])
df = df.sort_values(by=['timestamp'],ascending=True)
df.reset_index(drop=True,inplace=True)
# Splitting data as Full train (80%), Test (20%)
df_full_train, df_test = train_test_split(df,test_size=0.2,shuffle=False,random_state=1)
# Set target and delete it from dataframe
y_full_train = df_full_train['cnt']
y_test = df_test['cnt']
del df_full_train['cnt']
del df_test['cnt']
# Function to train the model and predict on validation data
def train_predict(df_full_train,df_test,y_full_train,model):
X_full_train = df_full_train.values
model.fit(X_full_train, y_full_train)
X_test = df_test.values
y_pred = model.predict(X_test)
y_train_pred = model.predict(X_full_train)
return y_pred, y_train_pred, model
# Function to evaluate various metrics/scores on predictions on validation and training
def evaluate_scores(y_test_eval, y_pred_eval, y_full_train_eval, y_pred_full_train_eval):
scores = {}
scores['val_r2'] = r2_score(y_test_eval, y_pred_eval)
scores['val_mse'] = mean_squared_error(y_test_eval, y_pred_eval,squared=True)
scores['val_rmse'] = mean_squared_error(y_test_eval, y_pred_eval,squared=False)
scores['val_mae'] = mean_absolute_error(y_test_eval, y_pred_eval)
scores['train_r2'] = r2_score(y_full_train_eval, y_pred_full_train_eval)
scores['train_mse'] = mean_squared_error(y_full_train_eval, y_pred_full_train_eval,squared=True)
scores['train_rmse'] = mean_squared_error(y_full_train_eval, y_pred_full_train_eval,squared=False)
scores['train_mae'] = mean_absolute_error(y_full_train_eval, y_pred_full_train_eval)
rnd_digits = 5 #round upto how many digits
for metric, value in scores.items():
scores[metric] = round(scores[metric],rnd_digits)
return scores
# Function to perform pre processing on data before training
# Combining all the step by step processing done above into a function
# Function to now create different features from timestamp
def pre_process_new_ft(df_to_process):
df_to_process['year'] = df_to_process['timestamp'].dt.year
df_to_process['month'] = df_to_process['timestamp'].dt.month
df_to_process['day'] = df_to_process['timestamp'].dt.day
df_to_process['hour'] = df_to_process['timestamp'].dt.hour
df_to_process['day-of-week'] = pd.to_datetime(df_to_process['timestamp']).dt.dayofweek.values
df_to_process['week-of-year'] = pd.to_datetime(df_to_process['timestamp']).dt.isocalendar().week.values
df_to_process['day-of-year'] = pd.to_datetime(df_to_process['timestamp']).dt.dayofyear
df_to_process['year'] = df_to_process['year'].astype('uint16')
df_to_process['month'] = df_to_process['month'].astype('uint8')
df_to_process['day'] = df_to_process['day'].astype('uint8')
df_to_process['hour'] = df_to_process['hour'].astype('uint8')
df_to_process['day-of-week'] = df_to_process['day-of-week'].astype('uint8')
df_to_process['week-of-year'] = df_to_process['week-of-year'].astype('uint8')
df_to_process['day-of-year'] = df_to_process['day-of-year'].astype('uint16')
return df_to_process
# Function to encode the time features using cyclical encoding using sine and cosine. Drop original time features
def pre_process_cyclic_encode(df_to_process,drop_org=True):
# Create cyclical encoded features
cyclical_features = ['year', 'month', 'day', 'hour', 'day-of-week', 'week-of-year', 'day-of-year']
for col in cyclical_features:
df_to_process[f"{col}_x_norm"] = 2 * math.pi * df_to_process[col] / df_to_process[col].max()
df_to_process[f"{col}_cos_x"] = np.cos(df_to_process[f"{col}_x_norm"])
df_to_process[f"{col}_sin_x"] = np.sin(df_to_process[f"{col}_x_norm"])
del df_to_process[f"{col}_x_norm"]
if drop_org:
for col in cyclical_features:
del df_to_process[col]
return df_to_process
# Train final model
# Preprocess by creating new time related features
df_full_train = pre_process_new_ft(df_full_train)
df_test = pre_process_new_ft(df_test)
# Drop the timestamp feature, since we added more meaningful features and experiment with timestamp had not helped
del df_full_train['timestamp']
del df_test['timestamp']
new_features = list(df_full_train.columns)
#Define the hyper-parameters for the XGB model
eta=0.1
n_estimators=1000
max_depth=4
min_child_weight=5
colsample_bytree=0.8
model = xgb.XGBRegressor(random_state=42, n_jobs=-1, objective="reg:squarederror", booster='gbtree', learning_rate=eta, n_estimators=n_estimators, max_depth=max_depth, min_child_weight=min_child_weight, colsample_bytree=colsample_bytree)
# Train and get predictions
y_pred, y_full_train_pred, model = train_predict(df_full_train[new_features],df_test[new_features],y_full_train,model)
# Score
scores = evaluate_scores(y_test, y_pred, y_full_train, y_full_train_pred)
print(scores)
# Save model to file
model_output_file = f'capstone-xgb_model.bin'
with open(model_output_file,'wb') as f_out:
pickle.dump((model),f_out)