-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathdiff3f.py
190 lines (178 loc) · 6.75 KB
/
diff3f.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import torch
from PIL import Image
from torchvision.utils import make_grid
import numpy as np
from diffusion import add_texture_to_render
from dino import get_dino_features
from render import batch_render
from pytorch3d.ops import ball_query
from tqdm import tqdm
from time import time
import random
FEATURE_DIMS = 1280+768 # diffusion unet + dino
VERTEX_GPU_LIMIT = 35000
def arange_pixels(
resolution=(128, 128),
batch_size=1,
subsample_to=None,
invert_y_axis=False,
margin=0,
corner_aligned=True,
jitter=None,
):
h, w = resolution
n_points = resolution[0] * resolution[1]
uh = 1 if corner_aligned else 1 - (1 / h)
uw = 1 if corner_aligned else 1 - (1 / w)
if margin > 0:
uh = uh + (2 / h) * margin
uw = uw + (2 / w) * margin
w, h = w + margin * 2, h + margin * 2
x, y = torch.linspace(-uw, uw, w), torch.linspace(-uh, uh, h)
if jitter is not None:
dx = (torch.ones_like(x).uniform_() - 0.5) * 2 / w * jitter
dy = (torch.ones_like(y).uniform_() - 0.5) * 2 / h * jitter
x, y = x + dx, y + dy
x, y = torch.meshgrid(x, y)
pixel_scaled = (
torch.stack([x, y], -1)
.permute(1, 0, 2)
.reshape(1, -1, 2)
.repeat(batch_size, 1, 1)
)
if subsample_to is not None and subsample_to > 0 and subsample_to < n_points:
idx = np.random.choice(
pixel_scaled.shape[1], size=(subsample_to,), replace=False
)
pixel_scaled = pixel_scaled[:, idx]
if invert_y_axis:
pixel_scaled[..., -1] *= -1.0
return pixel_scaled
def get_features_per_vertex(
device,
pipe,
dino_model,
mesh,
prompt,
num_views=100,
H=512,
W=512,
tolerance=0.01,
use_latent=False,
use_normal_map=True,
num_images_per_prompt=1,
mesh_vertices=None,
return_image=True,
bq=True,
prompts_list=None,
):
t1 = time()
if mesh_vertices is None:
mesh_vertices = mesh.verts_list()[0]
if len(mesh_vertices) > VERTEX_GPU_LIMIT:
samples = random.sample(range(len(mesh_vertices)), 10000)
maximal_distance = torch.cdist(mesh_vertices[samples], mesh_vertices[samples]).max()
else:
maximal_distance = torch.cdist(mesh_vertices, mesh_vertices).max() # .cpu()
ball_drop_radius = maximal_distance * tolerance
batched_renderings, normal_batched_renderings, camera, depth = batch_render(
device, mesh, mesh.verts_list()[0], num_views, H, W, use_normal_map
)
print("Rendering complete")
if use_normal_map:
normal_batched_renderings = normal_batched_renderings.cpu()
batched_renderings = batched_renderings.cpu()
pixel_coords = arange_pixels((H, W), invert_y_axis=True)[0]
pixel_coords[:, 0] = torch.flip(pixel_coords[:, 0], dims=[0])
grid = arange_pixels((H, W), invert_y_axis=False)[0].to(device).reshape(1, H, W, 2).half()
camera = camera.cpu()
normal_map_input = None
depth = depth.cpu()
torch.cuda.empty_cache()
ft_per_vertex = torch.zeros((len(mesh_vertices), FEATURE_DIMS)).half() # .to(device)
ft_per_vertex_count = torch.zeros((len(mesh_vertices), 1)).half() # .to(device)
for idx in tqdm(range(len(batched_renderings))):
dp = depth[idx].flatten().unsqueeze(1)
xy_depth = torch.cat((pixel_coords, dp), dim=1)
indices = xy_depth[:, 2] != -1
xy_depth = xy_depth[indices]
world_coords = (
camera[idx].unproject_points(
xy_depth, world_coordinates=True, from_ndc=True
) # .cpu()
).to(device)
diffusion_input_img = (
batched_renderings[idx, :, :, :3].cpu().numpy() * 255
).astype(np.uint8)
if use_normal_map:
normal_map_input = normal_batched_renderings[idx]
depth_map = depth[idx, :, :, 0].unsqueeze(0).to(device)
if prompts_list is not None:
prompt = random.choice(prompts_list)
diffusion_output = add_texture_to_render(
pipe,
diffusion_input_img,
depth_map,
prompt,
normal_map_input=normal_map_input,
use_latent=use_latent,
num_images_per_prompt=num_images_per_prompt,
return_image=return_image
)
aligned_dino_features = get_dino_features(device, dino_model, diffusion_output[1][0], grid)
aligned_features = None
with torch.no_grad():
ft = torch.nn.Upsample(size=(H,W), mode="bilinear")(diffusion_output[0].unsqueeze(0)).to(device)
ft_dim = ft.size(1)
aligned_features = torch.nn.functional.grid_sample(
ft, grid, align_corners=False
).reshape(1, ft_dim, -1)
aligned_features = torch.nn.functional.normalize(aligned_features, dim=1)
# this is feature per pixel in the grid
aligned_features = torch.hstack([aligned_features*0.5, aligned_dino_features*0.5])
features_per_pixel = aligned_features[0, :, indices].cpu()
# map pixel to vertex on mesh
if bq:
queried_indices = (
ball_query(
world_coords.unsqueeze(0),
mesh_vertices.unsqueeze(0),
K=100,
radius=ball_drop_radius,
return_nn=False,
)
.idx[0]
.cpu()
)
mask = queried_indices != -1
repeat = mask.sum(dim=1)
ft_per_vertex_count[queried_indices[mask]] += 1
ft_per_vertex[queried_indices[mask]] += features_per_pixel.repeat_interleave(
repeat, dim=1
).T
else:
distances = torch.cdist(
world_coords, mesh_vertices, p=2
)
closest_vertex_indices = torch.argmin(distances, dim=1).cpu()
ft_per_vertex[closest_vertex_indices] += features_per_pixel.T
ft_per_vertex_count[closest_vertex_indices] += 1
idxs = (ft_per_vertex_count != 0)[:, 0]
ft_per_vertex[idxs, :] = ft_per_vertex[idxs, :] / ft_per_vertex_count[idxs, :]
missing_features = len(ft_per_vertex_count[ft_per_vertex_count == 0])
print("Number of missing features: ", missing_features)
print("Copied features from nearest vertices")
if missing_features > 0:
filled_indices = ft_per_vertex_count[:, 0] != 0
missing_indices = ft_per_vertex_count[:, 0] == 0
distances = torch.cdist(
mesh_vertices[missing_indices], mesh_vertices[filled_indices], p=2
)
closest_vertex_indices = torch.argmin(distances, dim=1).cpu()
ft_per_vertex[missing_indices, :] = ft_per_vertex[filled_indices][
closest_vertex_indices, :
]
t2 = time() - t1
t2 = t2 / 60
print("Time taken in mins: ", t2)
return ft_per_vertex