-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmodel.py
49 lines (37 loc) · 1.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, MaxPool2D, Conv2DTranspose, Concatenate, Input
from tensorflow.keras.models import Model
def conv_block(inputs, num_filters):
x = Conv2D(num_filters, 3, padding="same")(inputs)
x = BatchNormalization()(x)
x = Activation("relu")(x)
x = Conv2D(num_filters, 3, padding="same")(x)
x = BatchNormalization()(x)
x = Activation("relu")(x)
return x
def encoder_block(inputs, num_filters):
x = conv_block(inputs, num_filters)
p = MaxPool2D((2, 2))(x)
return x, p
def decoder_block(inputs, skip_features, num_filters):
x = Conv2DTranspose(num_filters, (2, 2), strides=2, padding="same")(inputs)
x = Concatenate()([x, skip_features])
x = conv_block(x, num_filters)
return x
def build_unet(input_shape):
inputs = Input(input_shape)
s1, p1 = encoder_block(inputs, 64)
s2, p2 = encoder_block(p1, 128)
s3, p3 = encoder_block(p2, 256)
s4, p4 = encoder_block(p3, 512)
b1 = conv_block(p4, 1024)
d1 = decoder_block(b1, s4, 512)
d2 = decoder_block(d1, s3, 256)
d3 = decoder_block(d2, s2, 128)
d4 = decoder_block(d3, s1, 64)
outputs = Conv2D(1, 1, padding="same", activation="sigmoid")(d4)
model = Model(inputs, outputs, name="UNET")
return model
if __name__ == "__main__":
input_shape = (512, 512, 3)
model = build_unet(input_shape)
model.summary()