-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.js
387 lines (382 loc) · 13.4 KB
/
main.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import { Niivue, NVMeshUtilities, NVImage } from "@niivue/niivue"
import { inferenceModelsList, brainChopOpts } from "./brainchop-parameters.js"
import { isChrome, localSystemDetails } from "./brainchop-telemetry.js"
import MyWorker from "./brainchop-webworker.js?worker"
import { Niimath } from "@niivue/niimath"
import {
antiAliasCuberille,
setPipelinesBaseUrl as setCuberillePipelinesUrl
} from "@itk-wasm/cuberille"
import {
repair,
smoothRemesh,
keepLargestComponent,
setPipelinesBaseUrl as setMeshFiltersPipelinesUrl,
} from "@itk-wasm/mesh-filters"
import { nii2iwi, iwm2meshCore } from "@niivue/cbor-loader"
// Use local, vendored WebAssembly module assets
const viteBaseUrl = import.meta.env.BASE_URL
const pipelinesBaseUrl = new URL(`${viteBaseUrl}pipelines`, document.location.origin).href
setCuberillePipelinesUrl(pipelinesBaseUrl)
setMeshFiltersPipelinesUrl(pipelinesBaseUrl)
self.addEventListener("install", (event) => {
event.waitUntil(
caches.open("app-static-v1").then((cache) => {
return cache.addAll([
"./",
"./index.html",
"./manifest.json",
"./models",
"./pipelines",
"./assets",
"./t1_crop.nii.gz",
"./niivue.css"]);
})
);
});
self.addEventListener("fetch", (event) => {
event.respondWith(
caches.match(event.request).then((response) => {
return response || fetch(event.request);
})
);
});
async function main() {
const niimath = new Niimath()
await niimath.init()
niimath.setOutputDataType('input') // call before setting image since this is passed to the image constructor
aboutBtn.onclick = function () {
const url = "https://github.com/niivue/brain2print"
window.open(url, "_blank")
}
opacitySlider0.oninput = function () {
nv1.setOpacity(0, opacitySlider0.value / 255)
nv1.updateGLVolume()
}
opacitySlider1.oninput = function () {
if (nv1.volumes.length < 2) return
nv1.setOpacity(1, opacitySlider1.value / 255)
}
async function ensureConformed() {
let nii = nv1.volumes[0]
let isConformed =
nii.dims[1] === 256 && nii.dims[2] === 256 && nii.dims[3] === 256
if (nii.permRAS[0] !== -1 || nii.permRAS[1] !== 3 || nii.permRAS[2] !== -2)
isConformed = false
if (isConformed) return
let nii2 = await nv1.conform(nii, false)
await nv1.removeVolume(nv1.volumes[0])
await nv1.addVolume(nii2)
}
async function closeAllOverlays() {
while (nv1.volumes.length > 1) {
await nv1.removeVolume(nv1.volumes[1])
}
}
modelSelect.onchange = async function () {
if (this.selectedIndex < 0) modelSelect.selectedIndex = 11
await closeAllOverlays()
await ensureConformed()
let model = inferenceModelsList[this.selectedIndex]
model.isNvidia = false
const rendererInfo = nv1.gl.getExtension("WEBGL_debug_renderer_info")
if (rendererInfo) {
model.isNvidia = nv1.gl
.getParameter(rendererInfo.UNMASKED_RENDERER_WEBGL)
.includes("NVIDIA")
}
let opts = brainChopOpts
opts.rootURL = location.href
const isLocalhost = Boolean(
window.location.hostname === "localhost" ||
// [::1] is the IPv6 localhost address.
window.location.hostname === "[::1]" ||
// 127.0.0.1/8 is considered localhost for IPv4.
window.location.hostname.match(
/^127(?:\.(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)){3}$/
)
)
if (isLocalhost) {
opts.rootURL = location.protocol + "//" + location.host
}
if (typeof chopWorker !== "undefined") {
console.log(
"Unable to start new segmentation: previous call has not completed"
)
return
}
chopWorker = await new MyWorker({ type: "module" })
let hdr = {
datatypeCode: nv1.volumes[0].hdr.datatypeCode,
dims: nv1.volumes[0].hdr.dims,
}
let msg = {
opts: opts,
modelEntry: model,
niftiHeader: hdr,
niftiImage: nv1.volumes[0].img,
}
chopWorker.postMessage(msg)
chopWorker.onmessage = function (event) {
let cmd = event.data.cmd
if (cmd === "ui") {
if (event.data.modalMessage !== "") {
chopWorker.terminate()
chopWorker = undefined
}
callbackUI(
event.data.message,
event.data.progressFrac,
event.data.modalMessage
)
}
if (cmd === "img") {
chopWorker.terminate()
chopWorker = undefined
callbackImg(event.data.img, event.data.opts, event.data.modelEntry)
}
}
}
saveBtn.onclick = function () {
nv1.volumes[1].saveToDisk("Custom.nii")
}
clipCheck.onchange = function () {
if (clipCheck.checked) {
nv1.setClipPlane([0, 0, 90])
} else {
nv1.setClipPlane([2, 0, 90])
}
}
function doLoadImage() {
saveBtn.disabled = true
opacitySlider0.oninput()
}
async function fetchJSON(fnm) {
const response = await fetch(fnm)
const js = await response.json()
return js
}
async function callbackImg(img, opts, modelEntry) {
closeAllOverlays()
let overlayVolume = await nv1.volumes[0].clone()
overlayVolume.zeroImage()
overlayVolume.hdr.scl_inter = 0
overlayVolume.hdr.scl_slope = 1
overlayVolume.img = new Uint8Array(img)
if (modelEntry.colormapPath) {
let cmap = await fetchJSON(modelEntry.colormapPath)
overlayVolume.setColormapLabel(cmap)
// n.b. most models create indexed labels, but those without colormap mask scalar input
overlayVolume.hdr.intent_code = 1002 // NIFTI_INTENT_LABEL
} else {
let colormap = opts.atlasSelectedColorTable.toLowerCase()
const cmaps = nv1.colormaps()
if (!cmaps.includes(colormap)) {
colormap = "actc"
}
overlayVolume.colormap = colormap
}
overlayVolume.opacity = opacitySlider1.value / 255
await nv1.addVolume(overlayVolume)
saveBtn.disabled = false
createMeshBtn.disabled = false
}
function callbackUI(
message = "",
progressFrac = -1,
modalMessage = ""
) {
if (message !== "") {
console.log(message)
document.getElementById("location").innerHTML = message
}
if (isNaN(progressFrac)) {
//memory issue
memstatus.style.color = "red"
memstatus.innerHTML = "Memory Issue"
} else if (progressFrac >= 0) {
modelProgress.value = progressFrac * modelProgress.max
}
if (modalMessage !== "") {
window.alert(modalMessage)
}
}
function handleLocationChange(data) {
document.getElementById("location").innerHTML =
" " + data.string
}
let defaults = {
backColor: [0.4, 0.4, 0.4, 1],
show3Dcrosshair: true,
onLocationChange: handleLocationChange,
}
createMeshBtn.onclick = function () {
if (nv1.meshes.length > 0) nv1.removeMesh(nv1.meshes[0])
saveMeshBtn.disabled = true
if (nv1.volumes.length < 1) {
window.alert("Image not loaded. Drag and drop an image.")
} else {
remeshDialog.show()
}
}
qualitySelect.onchange = function () {
const isBetterQuality = Boolean(Number(qualitySelect.value))
const opacity = 1.0 - (0.5 * Number(isBetterQuality))
largestCheck.disabled = isBetterQuality
largestClusterGroup.style.opacity = opacity
bubbleCheck.disabled = isBetterQuality
bubbleGroup.style.opacity = opacity
closeMM.disabled = isBetterQuality
closeGroup.style.opacity = opacity
}
applyBtn.onclick = async function () {
const isBetterQuality = Boolean(Number(qualitySelect.value))
const startTime = performance.now()
if (isBetterQuality)
await applyQuality()
else
await applyFaster()
console.log(`Execution time: ${Math.round(performance.now() - startTime)} ms`)
}
async function applyFaster() {
const niiBuffer = await nv1.saveImage({volumeByIndex: nv1.volumes.length - 1}).buffer
const niiFile = new File([niiBuffer], 'image.nii')
let processor = niimath.image(niiFile)
loadingCircle.classList.remove('hidden')
//mesh with specified isosurface
const isoValue = 0.5
//const largestCheckValue = largestCheck.checked
let reduce = Math.min(Math.max(Number(shrinkPct.value) / 100, 0.01), 1)
let hollowSz = Number(hollowSelect.value )
let closeSz = Number(closeMM.value)
const pixDim = Math.min(Math.min(nv1.volumes[0].hdr.pixDims[1],nv1.volumes[0].hdr.pixDims[2]), nv1.volumes[0].hdr.pixDims[3])
if ((pixDim < 0.2) && ((hollowSz !== 0) || (closeSz !== 0))) {
hollowSz *= pixDim
closeSz *= pixDim
console.log('Very small pixels, scaling hollow and close values by ', pixDim)
}
if (hollowSz < 0) {
processor = processor.hollow(0.5, hollowSz)
}
if ((isFinite(closeSz)) && (closeSz > 0)){
processor = processor.close(isoValue, closeSz, 2 * closeSz)
}
processor = processor.mesh({
i: isoValue,
l: largestCheck.checked ? 1 : 0,
r: reduce,
b: bubbleCheck.checked ? 1 : 0
})
console.log('niimath operation', processor.commands)
const retBlob = await processor.run('test.mz3')
const arrayBuffer = await retBlob.arrayBuffer()
loadingCircle.classList.add('hidden')
if (nv1.meshes.length > 0)
nv1.removeMesh(nv1.meshes[0])
await nv1.loadFromArrayBuffer(arrayBuffer, 'test.mz3')
nv1.reverseFaces(0)
}
async function applyQuality() {
const volIdx = nv1.volumes.length - 1
let hdr = nv1.volumes[volIdx].hdr
let img = nv1.volumes[volIdx].img
let hollowInt = Number(hollowSelect.value )
if (hollowInt < 0){
const vol = nv1.volumes[volIdx]
const niiBuffer = await nv1.saveImage({volumeByIndex: nv1.volumes.length - 1}).buffer
const niiBlob = new Blob([niiBuffer], { type: 'application/octet-stream' })
const niiFile = new File([niiBlob], 'input.nii')
niimath.setOutputDataType('input') // call before setting image since this is passed to the image constructor
let image = niimath.image(niiFile)
image = image.gz(0)
image = image.ras()
image = image.hollow(0.5, hollowInt)
const outBlob = await image.run('output.nii')
let outFile = new File([outBlob], 'hollow.nii')
const outVol = await NVImage.loadFromFile({
file: outFile,
name: outFile.name
})
hdr = outVol.hdr
img = outVol.img
}
loadingCircle.classList.remove("hidden")
meshProcessingMsg.classList.remove("hidden")
meshProcessingMsg.textContent = "Generating mesh from segmentation"
const itkImage = nii2iwi(hdr, img, false)
itkImage.size = itkImage.size.map(Number)
const { mesh } = await antiAliasCuberille(itkImage, { noClosing: true })
meshProcessingMsg.textContent = "Generating manifold"
const { outputMesh: repairedMesh } = await repair(mesh, { maximumHoleArea: 50.0 })
meshProcessingMsg.textContent = "Keep largest mesh component"
const { outputMesh: largestOnly } = await keepLargestComponent(repairedMesh)
while (nv1.meshes.length > 0) {
nv1.removeMesh(nv1.meshes[0])
}
const initialNiiMesh = iwm2meshCore(largestOnly)
const initialNiiMeshBuffer = NVMeshUtilities.createMZ3(initialNiiMesh.positions, initialNiiMesh.indices, false)
await nv1.loadFromArrayBuffer(initialNiiMeshBuffer, 'trefoil.mz3')
meshProcessingMsg.textContent = "Smoothing and remeshing"
const smooth = parseInt(smoothSlide.value)
const shrink = parseFloat(shrinkPct.value)
console.log(`smoothing iterations ${smooth} shrink percent ${shrink}`)
const { outputMesh: smoothedMesh } = await smoothRemesh(largestOnly, { newtonIterations: smooth, numberPoints: shrink })
const { outputMesh: smoothedRepairedMesh } = await repair(smoothedMesh, { maximumHoleArea: 50.0 })
const niiMesh = iwm2meshCore(smoothedRepairedMesh)
loadingCircle.classList.add("hidden")
meshProcessingMsg.classList.add("hidden")
while (nv1.meshes.length > 0) {
nv1.removeMesh(nv1.meshes[0])
}
const meshBuffer = NVMeshUtilities.createMZ3(niiMesh.positions, niiMesh.indices, false)
await nv1.loadFromArrayBuffer(meshBuffer, 'trefoil.mz3')
}
saveMeshBtn.onclick = function () {
if (nv1.meshes.length < 1) {
window.alert("No mesh open for saving. Use 'Create Mesh'.")
} else {
saveDialog.show()
}
}
applySaveBtn.onclick = function () {
if (nv1.meshes.length < 1) {
return
}
let format = "obj"
if (formatSelect.selectedIndex === 0) {
format = "mz3"
}
if (formatSelect.selectedIndex === 2) {
format = "stl"
}
const scale = 1 / Number(scaleSelect.value)
const pts = nv1.meshes[0].pts.slice()
for (let i = 0; i < pts.length; i++) pts[i] *= scale
NVMeshUtilities.saveMesh(pts, nv1.meshes[0].tris, `mesh.${format}`, true)
}
var chopWorker
let nv1 = new Niivue(defaults)
nv1.attachToCanvas(gl1)
nv1.opts.dragMode = nv1.dragModes.pan
nv1.opts.multiplanarForceRender = true
nv1.opts.yoke3Dto2DZoom = true
nv1.opts.crosshairGap = 11
await nv1.loadVolumes([{ url: "./t1_crop.nii.gz" }])
for (let i = 0; i < inferenceModelsList.length; i++) {
var option = document.createElement("option")
option.text = inferenceModelsList[i].modelName
option.value = inferenceModelsList[i].id.toString()
modelSelect.appendChild(option)
}
qualitySelect.onchange()
nv1.onImageLoaded = doLoadImage
nv1.onMeshLoaded = (volume) => {
saveMeshBtn.disabled = false
}
modelSelect.selectedIndex = -1
console.log('brain2print 20241230')
// uncomment next two lines to automatically run segmentation when web page is loaded
// modelSelect.selectedIndex = 11
// modelSelect.onchange()
}
main()