-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtest_seg.py
135 lines (103 loc) · 4.37 KB
/
test_seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
"""
Copyright (c) 2019, National Institute of Informatics
All rights reserved.
Author: Huy H. Nguyen
-----------------------------------------------------
Script for testing segmentation of ClassNSeg (the proposed method)
"""
import os
import torch
import numpy as np
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
from tqdm import tqdm
from sklearn import metrics
import argparse
from model.ae import Encoder
from model.ae import Decoder
from model.ae import ActivationLoss
from model.ae import SegmentationLoss
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default ='datasets/face2face/source-to-target', help='path to dataset')
parser.add_argument('--test_set', default ='test', help='path to test dataset')
parser.add_argument('--workers', type=int, help='number of data loading workers', default=0)
parser.add_argument('--batchSize', type=int, default=64, help='input batch size')
parser.add_argument('--imageSize', type=int, default=256, help='the height / width of the input image to network')
parser.add_argument('--gpu_id', type=int, default=0, help='GPU ID')
parser.add_argument('--id', type=int, default=46, help="checkpoint ID")
parser.add_argument('--outf', default='checkpoints/full', help='folder to output images and model checkpoints')
opt = parser.parse_args()
print(opt)
if __name__ == "__main__":
text_writer = open(os.path.join(opt.outf, 'segmentation.txt'), 'w')
encoder = Encoder(3)
decoder = Decoder(3)
encoder.load_state_dict(torch.load(os.path.join(opt.outf,'encoder_' + str(opt.id) + '.pt')))
encoder.eval()
decoder.load_state_dict(torch.load(os.path.join(opt.outf,'decoder_' + str(opt.id) + '.pt')))
decoder.eval()
if opt.gpu_id >= 0:
encoder.cuda(opt.gpu_id)
decoder.cuda(opt.gpu_id)
class Normalize_3D(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, tensor):
"""
Tensor: Normalized image.
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
Returns: """
for t, m, s in zip(tensor, self.mean, self.std):
t.sub_(m).div_(s)
return tensor
transform_tns = transforms.Compose([
transforms.ToTensor(),
])
transform_norm = Normalize_3D((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
dataset_test = dset.ImageFolder(root=os.path.join(opt.dataset, opt.test_set), transform=transform_tns)
assert dataset_test
dataloader_test = torch.utils.data.DataLoader(dataset_test, batch_size=opt.batchSize, shuffle=False, num_workers=int(opt.workers))
accuracy = 0.0
count = 0
for fft_data, labels_data in tqdm(dataloader_test):
rgb = transform_norm(fft_data[:,:,:,0:256])
mask = fft_data[:,0,:,256:512]
mask[mask >= 0.5] = 1.0
mask[mask < 0.5] = 0.0
mask = mask.long()
if opt.gpu_id >= 0:
rgb = rgb.cuda(opt.gpu_id)
latent = encoder(rgb).reshape(-1, 2, 64, 16, 16)
zero_abs = torch.abs(latent[:,0]).view(latent.shape[0], -1)
zero = zero_abs.mean(dim=1)
one_abs = torch.abs(latent[:,1]).view(latent.shape[0], -1)
one = one_abs.mean(dim=1)
output_pred = torch.zeros(fft_data.shape[0])
for i in range(fft_data.shape[0]):
if one[i] >= zero[i]:
output_pred[i] = 1.0
else:
output_pred[i] = 0.0
y = torch.eye(2)
if opt.gpu_id >= 0:
y = y.cuda(opt.gpu_id)
output_pred = output_pred.cuda(opt.gpu_id)
y = y.index_select(dim=0, index=output_pred.long())
latent = (latent * y[:,:,None, None, None]).reshape(-1, 128, 16, 16)
seg, rect = decoder(latent)
mask = mask.cpu().numpy()
seg = seg[:,1,:,:].detach().cpu().numpy()
seg[seg >= 0.5] = 1.0
seg[seg < 0.5] = 0.0
seg = seg.astype(np.uint8)
for i in range(mask.shape[0]):
accuracy += metrics.accuracy_score(mask[i].reshape(mask[i].size), seg[i].reshape(seg[i].size))
count += 1
accuracy /= count
print('[Epoch %d] Accuracy: %.2f' % (opt.id, accuracy*100))
text_writer.write('%d,%.2f\n'% (opt.id, accuracy*100))
text_writer.flush()
text_writer.close()