-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalternating_harmonic_series.tex
193 lines (119 loc) · 10.4 KB
/
alternating_harmonic_series.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
% ===============================================
% MATH 29: Discrete Mathematics Fall 2018
% hw_template.tex
% ===============================================
% -------------------------------------------------------------------------
% You can ignore this preamble. Go on
% down to the section that says "START HERE"
% -------------------------------------------------------------------------
\documentclass{article}
\usepackage[margin=1.5in]{geometry} % Please keep the margins at 1.5 so that there is space for grader comments.
\usepackage{amsmath,amsthm,amssymb,hyperref}
\newcommand{\R}{\mathbf{R}}
\newcommand{\Z}{\mathbf{Z}}
\newcommand{\N}{\mathbf{N}}
\newcommand{\Q}{\mathbf{Q}}
\newenvironment{theorem}[2][Theorem]{\begin{trivlist}
\item[\hskip \labelsep {\bfseries #1}\hskip \labelsep {\bfseries #2.}]}{\end{trivlist}}
\newenvironment{lemma}[2][Lemma]{\begin{trivlist}
\item[\hskip \labelsep {\bfseries #1}\hskip \labelsep {\bfseries #2.}]}{\end{trivlist}}
\newenvironment{claim}[2][Claim]{\begin{trivlist}
\item[\hskip \labelsep {\bfseries #1}\hskip \labelsep {\bfseries #2.}]}{\end{trivlist}}
\newenvironment{problem}[2][Problem]{\begin{trivlist}
\item[\hskip \labelsep {\bfseries #1}\hskip \labelsep {\bfseries #2.}]}{\end{trivlist}}
\newenvironment{proposition}[2][Proposition]{\begin{trivlist}
\item[\hskip \labelsep {\bfseries #1}\hskip \labelsep {\bfseries #2.}]}{\end{trivlist}}
\newenvironment{corollary}[2][Corollary]{\begin{trivlist}
\item[\hskip \labelsep {\bfseries #1}\hskip \labelsep {\bfseries #2.}]}{\end{trivlist}}
\newenvironment{solution}{\begin{proof}[Solution]}{\end{proof}}
\begin{document}
\large % please keep the text at this size for ease of reading.
\linespread{1.5} % please keep 1.5 line spacing so that there is space for grader comments.
% ------------------------------------------ %
% START HERE %
% ------------------------------------------ %
{\Large MATH 3310 % Replace with appropriate number -- keep this THE SAME even when you revise and resubmit.
\hfill Convergence of Alternating Harmonic to log(2)}
\begin{center}
{\Large Nick Figgins} % Replace "Author's Name" with your name
\end{center}
\vspace{0.05in}
% -----------------------------------------------------
% The following two environments (claim, proof) are
% where you will enter the statement and proof of your
% first problem for this assignment.
%
% In the theorem environment, you can replace the word
% "theorem" in the \begin and \end commands with
% "theorem", "proposition", "lemma", etc., depending on
% what you are proving.
% -----------------------------------------------------
\begin{claim}{}
The alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{(n+1)}}{n} $ converges to $\log{2} = 0.693147181...$
\end{claim}
This claim will be proven using Exercise 7.5.8 (d) and (e) in [A]. I will begin with part (d), first proving the convergence of the sequence:
\begin{equation}
\gamma_n = (1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n}) - \log{n}
\end{equation}
After I have proven the convergence of $\gamma_n$, I will use the definitions of $\gamma_n$ and $\gamma_{2n}$ to derive a value for $\log{2}$ by considering the sequence $\gamma_{2n} - \gamma_n$. Throughout this proof, the fact that $log(x) = \int_{1}^{x} \frac{1}{t} dt$ will be used.
\begin{proof}
Convergence of (1):
To prove that $\gamma_n$ is bounded below (by zero), I will prove that $(1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n}) \geq \log{n}$ $\forall$ $n \in \mathbf{N}$
$\log{n} = \int_{1}^{n} \frac{1}{t} dt = \int_{1}^{2} \frac{1}{t} dt + \int_{2}^{3} \frac{1}{t} dt + ... + \int_{n-1}^{n} \frac{1}{t} dt$
For each of these definite integrals, $\frac{1}{t}$ is at its maximum value when t is equal to its lower bound value, i.e. $\forall t \in [n, n+1]$, $\frac{1}{t} \leq \frac{1}{n}$. So, we can plug in these upper values for $\frac{1}{t}$ into our integrals to get an integral greater than or equal to our integrals evaluated with $\frac{1}{t}$:
$\int_{1}^{n} \frac{1}{t} dt = \int_{1}^{2} \frac{1}{t} dt + \int_{2}^{3} \frac{1}{t} dt + ... + \int_{n-1}^{n} \frac{1}{t} dt \leq \int_{1}^{2} \frac{1}{1} dt + \int_{2}^{3} \frac{1}{2} dt + ... + \int_{n-1}^{n} \frac{1}{n-1} dt$
$\int_{1}^{2} \frac{1}{1} dt + \int_{2}^{3} \frac{1}{2} dt + ... + \int_{n-1}^{n} \frac{1}{n-1} dt = (2-1) + (\frac{3}{2} - 1) + ... + (\frac{n}{n-1} - \frac{n-1}{n-1}) = 1 + \frac{1}{2} + ... + (\frac{1}{n-1})$
$\implies \int_{1}^{n} \frac{1}{t} dt \leq (1 + \frac{1}{2} + ... + \frac{1}{n-1})$
$\implies \gamma_n = (1 + \frac{1}{2} + ... + \frac{1}{n}) - \int_{1}^{n} \frac{1}{t} dt \geq (1 + \frac{1}{2} + ... + \frac{1}{n}) - (1 + \frac{1}{2} + ... + \frac{1}{n-1}) = \frac{1}{n}$
$\implies \gamma_n \geq \frac{1}{n}$
Thus we have that $\gamma_n$ is greater than or equal to $\frac{1}{n}$ $\forall$ $n \in \mathbf{N}$, proving that $\gamma_n$ is bounded below by zero since $\frac{1}{n} > 0$ $\forall n$ $\in \mathbf{N}$.
Next, I will show that $(\gamma_n)$ is decreasing.
$\gamma_n = (1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n}) - \ln{n} = \sum_{k=1}^{n} \frac{1}{k} - \ln{(n)}$
$\gamma_{n+1} = \sum_{k=1}^{n+1} \frac{1}{k} - \ln{(n+1)}$
$\gamma_{n+1} \leq \gamma_n \iff \sum_{k=1}^{n+1} \frac{1}{k} - \ln{(n+1)} \leq \sum_{k=1}^{n} \frac{1}{k} - \ln{(n)}$
$\iff \frac{1}{n+1} + \sum_{k=1}^{n} \frac{1}{k} - \ln{(n+1)} \leq \sum_{k=1}^{n} \frac{1}{k} - \ln{(n)}$
$\iff \frac{1}{n+1} - \ln{(n+1)} \leq - \ln{(n)}$
$\iff \frac{1}{n+1} \leq \ln{(n+1)} - \ln{(n)} = \int_{1}^{n+1} \frac{1}{t} dt - \int_{1}^{n} \frac{1}{t} dt = \int_{n}^{n+1} \frac{1}{t} dt$
$\int_{n}^{n+1} \frac{1}{t} dt$ is at its minimum when t = n+1, so we can plug in this t value into the integral to state that our given integral must be greater than or equal to this value:
$\int_{n}^{n+1} \frac{1}{n+1} dt \leq \int_{n}^{n+1} \frac{1}{t} dt$
$\int_{n}^{n+1} \frac{1}{n+1} dt = \frac{1}{n+1} \implies \frac{1}{n+1} \leq \int_{n}^{n+1} \frac{1}{t} dt$
So we have that the statement is true for all $n \in \mathbf{N}$, thus this implication proves that $\gamma_{n+1} \leq \gamma_n$ which implies that the sequence is decreasing. Then, since $(\gamma_n)$ is decreasing and bounded below, we have that the sequence must converge by the Monotone Convergence Theorem.
Knowing that $(\gamma_n)$ converges, we must have that $(\gamma_{2n})$ also converges as $n \rightarrow \infty$ and to the same value as $(\gamma_n)$. Thus, we must also have that the sequence $\lim_{n \rightarrow \infty} (\gamma_n - \gamma_{2n}) = 0$.
$\lim_{n \rightarrow \infty} (\gamma_n - \gamma_{2n}) = 0$
$\implies \lim_{n \rightarrow \infty} ((\sum_{k=1}^{n} \frac{1}{k} - \log(n)) - (\sum_{k=1}^{2n} \frac{1}{k} - \log(2n))) = 0$
$\implies \lim_{n \rightarrow \infty} ((\sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{2n} \frac{1}{k} - \log(n) + \log(2n)) = 0$
Using log rules proven in HW 12, we can rewrite $\log(2n)$ as $\log(2) + \log(n)$, giving:
$\implies \lim_{n \rightarrow \infty} ((\sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{2n} \frac{1}{k} - \log(n) + \log(n) + \log(2)) = 0$
$\implies \lim_{n \rightarrow \infty} ((\sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{2n} \frac{1}{k} + \log(2)) = 0$
Since $\log(2)$ is a constant, we can rewrite this by the ALT as:
$\lim_{n \rightarrow \infty} ((\sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{2n} \frac{1}{k}) + \log(2) = 0$
$\implies \lim_{n \rightarrow \infty} ((\sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{2n} \frac{1}{k}) = -\log(2)$
$\implies \lim_{n \rightarrow \infty} ( - \sum_{k=n+1}^{2n} \frac{1}{k}) = -\log(2)$
$\implies -\lim_{n \rightarrow \infty} (\sum_{k=n+1}^{2n} \frac{1}{k}) = -\log(2)$
$\implies \lim_{n \rightarrow \infty} (\sum_{k=n+1}^{2n} \frac{1}{k}) = \log(2)$
Next, I will prove that $\sum_{k=n+1}^{2n} \frac{1}{k} = \sum_{i=1}^{2n} \frac{(-1)^{i+1}}{i}$ using proof by induction.
Let n = 1:
$\sum_{k=2}^{2} \frac{1}{k} = \sum_{i=1}^{2} \frac{(-1)^{i+1}}{i}$
$ \implies \frac{1}{2} = 1 - \frac{1}{2} = \frac{1}{2}$
Let n = 2:
$\sum_{k=3}^{4} \frac{1}{k} = \sum_{i=1}^{4} \frac{(-1)^{i+1}}{i}$
$ \implies \frac{1}{3} + \frac{1}{4} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4}$
Adding $\frac{1}{4}$ to both sides yields:
$\frac{1}{3} + \frac{1}{2} = 1 - \frac{1}{2} + \frac{1}{3}$
$\implies \frac{1}{3} + \frac{1}{2} = \frac{1}{2} + \frac{1}{3}$.
So, the above statement is true for n=1 and n=2. Assume that the above is true for n=r. Now, I will prove this true for n=r+1:
$\sum_{k=n+1}^{2r} \frac{1}{k} = \sum_{i=1}^{2r} \frac{(-1)^{i+1}}{i} \implies \sum_{k=r+1}^{2r} \frac{1}{k} - \frac{1}{r+1} = \sum_{i=1}^{2n} \frac{(-1)^{i+1}}{i} - \frac{1}{r+1}$
$\sum_{k=r+1}^{2r} \frac{1}{k} - \frac{1}{r+1}$ can be rewritten as a single sum by removing the $(r+1)^{th}$ index to get: $\sum_{k=r+2}^{2r} \frac{1}{k}$. Next, we need our summation to go to $2(r+1) = 2r + 2$, which we can do by adding $\frac{1}{2r+1} + \frac{1}{2r+2}$ on both sides.
$\sum_{k=r+2}^{2r} \frac{1}{k} + \frac{1}{2r+1} + \frac{1}{2r+2} = \sum_{i=1}^{2r} \frac{(-1)^{i+1}}{i} - \frac{1}{r+1} + \frac{1}{2r+1} + \frac{1}{2r+2}$
$\implies \sum_{k=r+2}^{2r+2} \frac{1}{k} = \sum_{i=1}^{2r} \frac{(-1)^{i+1}}{i} - \frac{1}{r+1} + \frac{1}{2r+1} + \frac{1}{2r+2}$
The left hand side of the equation is now correctly defined for $n = r+1$. Now, the right hand side can be further simplified:
$\sum_{i=1}^{2r} \frac{(-1)^{i+1}}{i} - \frac{1}{r+1} + \frac{1}{2r+1} + \frac{1}{2r+2} = \sum_{i=1}^{2r} \frac{(-1)^{i+1}}{i} - \frac{2}{2r+2} + \frac{1}{2r+1} + \frac{1}{2r+2}$
$= \sum_{i=1}^{2r} \frac{(-1)^{i+1}}{i} - \frac{1}{2r+2} + \frac{1}{2r+1}$
$= \sum_{i=1}^{2r+2} \frac{(-1)^{i+1}}{i}$.
Thus, we now have that $\sum_{k=r+2}^{2r+2} \frac{1}{k} = \sum_{i=1}^{2r+2} \frac{(-1)^{i+1}}{i}$, showing that our statement is true for n = r + 1 and $\forall$ $n \in \mathbf{N}$.
So, we have:
$\log(2) = \lim_{n \rightarrow \infty} \sum_{k=n+1}^{2n} \frac{1}{k} = \lim_{n \rightarrow \infty} \sum_{i=1}^{2n} \frac{(-1)^{i+1}}{i}$
Now, by the alternating series test, we know that $\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i}$ converges since we can let $(a_n) = \frac{1}{i}$ which is both decreasing and converges to zero as $i \rightarrow \infty$. Thus, we can set the partial sum of our series to $S_m = \sum_{i=1}^{2m} \frac{(-1)^{i+1}}{i}$. Then we have that $\lim_{m \rightarrow \infty} S_m = \log(2)$ which implies that the infinite alternating harmonic series must also converge to this value, finally giving us:
$\log(2) = \lim_{m \rightarrow \infty} S_m = \sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + ...$
\end{proof}
\end{document}