-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathtestModel.lua
108 lines (85 loc) · 2.58 KB
/
testModel.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
function testModel(allData,model,valInds,epochError)
print('testing corrected verison 2')
local timerTest = torch.Timer()
local dtype = 'torch.DoubleTensor'
if opt.useCUDA then
dtype = 'torch.CudaTensor'
end
local criterion = nn.ClassNLLCriterion():type(dtype)
model:evaluate()
-- push the validation data through the network
local nValPrograms = #valInds
local valError = 0
local correct = 0
local confmat = torch.zeros(2,2)
local lens = torch.zeros(nValPrograms)
-- We need to make sure the rare-class is regarded as positive
-- This means the f-score etc will be corectly calculated
-- When reading the data benign is labelled as 1 and malware as 2
local nBenign = 0
local nMalware = 0
for k = 1,nValPrograms do
if allData.label[valInds[k]] == 1 then
nBenign = nBenign + 1
else
nMalware = nMalware + 1
end
end
local positiveLabel = 1
if nMalware < nBenign then
positiveLabel = 2
end
print('Test Stats : nMalware ',nMalware, ' nBenign ',nBenign, ' positiveLabel ',positiveLabel)
--local valBatch = torch.zeros(1,opt.programLen):type(dtype)
local valLabel = torch.zeros(1):type(dtype)
for k = 1,nValPrograms do
valLabel[{1}] = allData.label[valInds[k]]
--valBatch[{{1},{}}] = allData.program[valInds[k]]
local currProgramPtr = allData.programStartPtrs[valInds[k]]
local currProgramLen = allData.programLengths[valInds[k]]
if currProgramLen > opt.maxSequenceLength then
currProgramLen = opt.maxSequenceLength
end
local valBatch = torch.zeros(1,currProgramLen):type(dtype)
valBatch[{{1},{}}] = allData.program[{{currProgramPtr,currProgramPtr + currProgramLen - 1}}]
local netOutput = model:forward(valBatch)
valError = valError + criterion:forward(netOutput,valLabel)
local netOutputProb = nn.Exp():forward(netOutput:double())
local v,i = torch.max(netOutputProb,2)
local pred = i[{1,1}]
local gt = allData.label[valInds[k]]
if pred == gt then
correct = correct + 1;
end
confmat[pred][gt] = confmat[pred][gt] + 1
end
valError = valError / nValPrograms
local tp = 0
local fp = 0
local fn = 0
if positiveLabel == 1 then
tp = confmat[1][1]
fp = confmat[1][2]
fn = confmat[2][1]
else
tp = confmat[2][2]
fp = confmat[2][1]
fn = confmat[1][2]
end
local testResult = {
-- tp = tp,
-- fp = fp,
-- fn = fn,
prec = tp / (tp + fp),
recall = tp / (tp + fn),
fscore = (2 * tp) / ((2 * tp) + fp + fn),
accuracy = correct/nValPrograms,
testError = valError,
}
local time = timerTest:time().real
model:training()
-- clean up
valLabel = nil
collectgarbage()
return testResult,confmat,time
end