-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmain.py
executable file
·205 lines (166 loc) · 6.52 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import pandas as pd
import numpy as np
import os
import click
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from apex import amp
from tqdm import *
from config import Config
from models import BertForTokenClassificationMultiOutput
from pytorch_pretrained_bert import BertAdam
from torch.utils.data import TensorDataset
from sklearn.model_selection import train_test_split
from utils import *
import gc
# torch.cuda.set_device(3)
device = torch.device('cuda')
def custom_loss_BCE(data, targets, loss_weight):
''' Define custom loss function for weighted BCE on 'target' column '''
bce_loss_1 = nn.BCEWithLogitsLoss(weight=targets[:,1:2])(data[:,:1],targets[:,:1])
bce_loss_2 = nn.BCEWithLogitsLoss()(data[:,1:],targets[:,2:])
return (bce_loss_1 * loss_weight) + bce_loss_2
def train(model, optimizer, loader, criterion):
avg_loss = 0.
avg_accuracy = 0.
lossf = None
tk0 = tqdm(enumerate(loader), total=len(loader), leave=False)
for i, (x_batch, added_fts, y_batch) in tk0:
optimizer.zero_grad()
all_y_pred = model(
x_batch.to(device),
f=added_fts.to(device),
attention_mask=(x_batch > 0).to(device),
labels=None
)
y_pred = all_y_pred[:, 0]
loss = criterion(all_y_pred, y_batch.to(device))
loss /= Config.accumulation_steps
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
if (i + 1) % Config.accumulation_steps == 0: # Wait for several backward steps
optimizer.step() # Now we can do an optimizer step
optimizer.zero_grad()
if lossf:
lossf = 0.98 * lossf + 0.02 * loss.item()
else:
lossf = loss.item()
tk0.set_postfix(loss=lossf)
avg_loss += loss.item() / len(loader)
avg_accuracy += torch.mean(
((torch.sigmoid(y_pred) > 0.5) == (y_batch[:, 0] > 0.5).to(device)).to(torch.float)
).item() / len(loader)
return avg_loss, avg_accuracy
def valid(model, loader, valid_df):
model.eval()
valid_preds = []
tk0 = tqdm(loader, total=len(loader))
with torch.no_grad():
for i, (x_batch, added_fts) in enumerate(tk0):
pred = model(x_batch.to(device), f=added_fts.to(device), attention_mask=(x_batch > 0).to(device), labels=None)
pred = pred[:, 0].detach().cpu().squeeze().numpy()
valid_preds.append(pred)
valid_preds = np.concatenate(valid_preds, axis=0)
MODEL_NAME = 'quora_multitarget'
identity_valid = valid_df[Config.identity_columns].copy()
predict_valid = torch.sigmoid(torch.tensor(valid_preds)).numpy()
total_score = scoring_valid(
predict_valid,
identity_valid,
valid_df.target.values,
model_name=MODEL_NAME,
save_output=True
)
return total_score
def main():
# Load data
X = np.load(os.path.join(Config.features, 'sequence_train.npy'))
X_meta = np.load(os.path.join(Config.features, 'meta_features_train.npy'))
y = np.load(os.path.join(Config.features, 'y_train.npy'))
y_aux = np.load(os.path.join(Config.features, 'y_train_aux.npy'))
loss_weight = np.load(os.path.join(Config.features, 'loss_weight.npy'))
loss_weight = float(loss_weight)
df = pd.read_csv(os.path.join(Config.data_dir, 'train.csv'))
np.random.seed(10)
indexs = np.random.permutation(X.shape[0])
n_train = int(Config.train_percent * len(indexs))
n_valid = int(Config.valid_percent * len(indexs))
train_indexs = indexs[:n_train]
X_train = X[train_indexs]
X_train_meta = X_meta[train_indexs]
y_train = y[train_indexs]
y_train_aux = y_aux[train_indexs]
valid_indexs = indexs[-n_valid:]
X_valid = X[valid_indexs]
X_valid_meta = X_meta[valid_indexs]
y_valid = y[valid_indexs]
y_valid_aux = y_aux[valid_indexs]
valid_df = df.iloc[valid_indexs]
del X, X_meta, y, y_aux
gc.collect()
train_dataset = TensorDataset(
torch.tensor(X_train, dtype=torch.long),
torch.tensor(X_train_meta, dtype=torch.float),
torch.tensor(np.hstack([y_train, y_train_aux]), dtype=torch.float)
)
train_loader = DataLoader(
train_dataset,
batch_size=Config.batch_size,
shuffle=True,
num_workers=8
)
valid_dataset = TensorDataset(
torch.tensor(X_valid, dtype=torch.long),
torch.tensor(X_valid_meta, dtype=torch.float)
)
valid_loader = DataLoader(
valid_dataset,
batch_size=32,
shuffle=False,
num_workers=8,
drop_last=False
)
np.random.seed(Config.seed)
torch.manual_seed(Config.seed)
torch.cuda.manual_seed(Config.seed)
torch.backends.cudnn.deterministic = True
model = BertForTokenClassificationMultiOutput.from_pretrained(
Config.features,
cache_dir=None,
num_aux_labels=Config.n_aux_targets
)
model.zero_grad()
model = model.to(device)
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
num_train_optimization_steps = int(Config.epochs * len(train_dataset) / Config.batch_size / Config.accumulation_steps)
optimizer = BertAdam(
optimizer_grouped_parameters,
lr=Config.lr,
warmup=0.1,
t_total=num_train_optimization_steps
)
model, optimizer = amp.initialize(model, optimizer, opt_level="O1", verbosity=0)
model = nn.DataParallel(model)
best_score = 0
os.makedirs(Config.checkpoint, exist_ok=True)
criterion = lambda x, y: custom_loss_BCE(x, y, loss_weight)
for epoch in range(Config.epochs):
print(f"Epoch: {epoch}")
train(model, optimizer, train_loader, criterion)
score = valid(model, valid_loader, valid_df)
print(f"Epoch {epoch}, score: {score}")
if score > best_score:
print(f"Score improved from: {best_score} to {score}")
best_score = score
output_model_file = os.path.join(Config.checkpoint, f"12layer_features_best.bin")
torch.save(model.state_dict(), output_model_file)
output_model_file = os.path.join(Config.checkpoint, f"12layer_features_{epoch}.bin")
torch.save(model.state_dict(), output_model_file)
if __name__ == '__main__':
main()