-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathautoregressive.py
602 lines (502 loc) · 18.5 KB
/
autoregressive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
import os
import multiprocessing
import pickle
import numpy as np
from tqdm import tqdm
import pandas as pd
from sklearn.preprocessing import StandardScaler
from typing import Optional, Tuple, Union
import pytorch_lightning as pl
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from torch.distributions.categorical import Categorical
from torch.utils.data import Dataset
from torch.utils.data.dataloader import DataLoader
import transformers
from transformers import GPT2LMHeadModel
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
import iglm
from iglm import IgLM
from iglm.model.tokens import *
from iglm.model.utils import *
from iglm.utils.general import exists
from seq_models.util.numbering import (
get_species,
)
def pplm_step(
hidden_states,
# last_hiddens,
# last_logits,
lm_head,
guidance_model,
guidance_step_size,
guidance_num_steps,
guidance_stability_coef,
):
kl_loss = torch.nn.KLDivLoss(log_target=True, reduction='batchmean')
old_logits = lm_head(hidden_states[..., -1:, :])
delta = torch.nn.Parameter(
torch.zeros_like(hidden_states[..., -1:, :])
)
optimizer = torch.optim.Adagrad([delta], lr=guidance_step_size)
with torch.enable_grad():
for _ in range(guidance_num_steps):
last_h = hidden_states[..., -1:, :] + delta
all_h = torch.cat([
hidden_states[..., :-1, :], last_h
], dim=-2)
new_logits = lm_head(last_h)
kl = kl_loss(new_logits, old_logits)
guide_loss = -guidance_model(all_h.mean(1)).sum()
loss = guide_loss + guidance_stability_coef * kl
# print(kl)
# print(guide_loss)
# print(loss)
# print("********")
optimizer.zero_grad()
loss.backward()
# delta_grad_norm = delta.grad.norm(keepdim=True)
# delta.grad /= delta_grad_norm.clamp_min(1e-7)
# delta.grad *= math.sqrt(h.size(-2))
optimizer.step()
# print("\n")
hidden_states[..., -1:, :] += delta.data
return hidden_states
class GuidedModel(GPT2LMHeadModel):
def set_guidance_model(
self,
guidance_model,
step_size=0.1,
num_steps=5,
stability_coef=0,
):
# self.saved_guide_scores = None
self.guidance_model = guidance_model
self.guidance_step_size = step_size
self.guidance_num_steps = num_steps
self.guidance_stability_coef = stability_coef
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.transformer.first_device)
hidden_states = hidden_states.to(self.lm_head.weight.device)
# if self.saved_guide_scores is None:
# self.saved_guide_scores = []
if self.guidance_model is not None:
hidden_states = pplm_step(
hidden_states,
# self.last_hiddens.clone(),
# self.last_logits,
self.lm_head,
self.guidance_model,
self.guidance_step_size,
self.guidance_num_steps,
self.guidance_stability_coef,
)
lm_logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
cross_attentions=transformer_outputs.cross_attentions,
)
class GuidedIgLM():
def __init__(self, model_name: str = "IgLM"):
self.device = torch.device(
'cuda' if torch.cuda.is_available() else 'cpu')
project_path = os.path.dirname(os.path.realpath(iglm.__file__))
trained_models_dir = os.path.join(project_path, 'trained_models')
ckpt = os.path.join(trained_models_dir, 'IgLM')
self.model = GuidedModel.from_pretrained(ckpt).to(self.device)
self.model.eval()
vocab_file = os.path.join(trained_models_dir, 'vocab.txt')
self.tokenizer = transformers.BertTokenizerFast(vocab_file=vocab_file,
do_lower_case=False)
def _generate(
self,
starting_tokens,
num_to_generate,
max_length,
min_new_tokens,
max_new_tokens,
top_p,
temperature
):
decoded_seqs = set() # Set to remove duplicates
# pbar = tqdm(total=num_to_generate)
for _ in range(10 * num_to_generate):
if len(decoded_seqs) >= num_to_generate:
break
if max_new_tokens is not None:
out = self.model.generate(
starting_tokens,
min_new_tokens=min_new_tokens,
max_new_tokens=max_new_tokens,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.cls_token_id,
forced_eos_token_id=self.tokenizer.cls_token_id,
bad_words_ids=BAD_WORD_IDS,
do_sample=True,
use_cache=False,
top_p=top_p,
temperature=temperature,
output_scores=True,
output_hidden_states=True,
return_dict_in_generate=True
)
else:
out = self.model.generate(
starting_tokens,
max_length=max_length,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.cls_token_id,
forced_eos_token_id=self.tokenizer.cls_token_id,
bad_words_ids=BAD_WORD_IDS,
do_sample=True,
use_cache=False,
top_p=top_p,
temperature=temperature,
output_scores=True,
output_hidden_states=True,
return_dict_in_generate=True
)
seq = out.sequences[0].detach().cpu().numpy()
if not validate_generated_seq(seq, self.tokenizer):
continue
# print(self.tokenizer.decode(seq))
decoded_tokens = self.tokenizer.decode(
iglm_to_infilled(seq, self.tokenizer))
decoded_seq = ''.join(decoded_tokens).replace(' ', '')
if decoded_seq not in decoded_seqs:
decoded_seqs.add(decoded_seq)
# pbar.update(1)
# pbar.close()
return list(decoded_seqs)
def generate(self,
chain_token,
species_token,
prompt_sequence=None,
num_to_generate=1000,
top_p=1,
temperature=1):
start_tokens = [chain_token, species_token]
if exists(prompt_sequence):
prompt_tokens = list(prompt_sequence)
start_tokens += prompt_tokens
start_tokens = torch.Tensor([
self.tokenizer.convert_tokens_to_ids(start_tokens)
]).int().to(self.device)
assert (start_tokens != self.tokenizer.unk_token_id
).all(), "Unrecognized token supplied in starting tokens"
generated_seqs = self._generate(
start_tokens,
num_to_generate=num_to_generate,
top_p=top_p,
temperature=temperature,
)
return generated_seqs
def infill(
self,
sequence,
chain_token,
species_token,
infill_range,
num_to_generate=1000,
max_length=150,
min_new_tokens=None,
max_new_tokens=None,
top_p=1,
temperature=1,
):
sequence = list(sequence)
masked_seq = mask_span(
sequence,
infill_range[0],
infill_range[1],
) # mask using provided indices
start_tokens = [chain_token, species_token] + masked_seq
start_tokens = torch.Tensor([
self.tokenizer.convert_tokens_to_ids(start_tokens)
]).int().to(self.device)
assert (start_tokens != self.tokenizer.unk_token_id
).all(), "Unrecognized token supplied in starting tokens"
generated_seqs = self._generate(
start_tokens,
num_to_generate=num_to_generate,
max_length=max_length,
min_new_tokens=min_new_tokens,
max_new_tokens=max_new_tokens,
top_p=top_p,
temperature=temperature,
)
return generated_seqs
SPECIES_TO_TOKEN = {
"camel": "[CAMEL]",
"alpaca": "[CAMEL]",
"human": "[HUMAN]",
"mouse": "[MOUSE]",
"rabbit": "[RABBIT]",
"rat": "[RAT]",
"rhesus": "[RHESUS]",
}
CHAIN_TOKENS = {
"vh": "[HEAVY]",
"vl": "[LIGHT]",
}
class Dataset(Dataset):
def __init__(self, X, y):
"""Reads source and target sequences from txt files."""
self.X = X
self.y = y
def __len__(self):
return len(self.X)
def __getitem__(self, index):
"""Returns one data pair (source and target)."""
data = {}
data["X"] = self.X[index]
data["y"] = self.y[index]
return data
class ClassificationHead(pl.LightningModule):
"""Classification Head for transformer encoders"""
def __init__(self, embed_size=512, target_size=1):
super(ClassificationHead, self).__init__()
self.embed_size = embed_size
self.target_size = target_size
# self.lin = torch.nn.Linear(embed_size, target_size)
self.regression_head = nn.Sequential(
nn.Linear(embed_size, 4 * embed_size),
nn.Tanh(),
nn.Linear(4 * embed_size, target_size)
)
def forward(self, hidden_state):
return self.regression_head(hidden_state)
# return self.lin(hidden_state)
def training_step(self, batch, batch_idx):
batch = {k: v.cuda() for k,v in batch.items()}
pred = self.forward(batch["X"]).flatten()
loss = (pred - batch["y"]).pow(2).mean()
return {"loss": loss}
def validation_step(self, batch, batch_idx):
batch = {k: v.cuda() for k,v in batch.items()}
with torch.no_grad():
pred = self.forward(batch["X"]).flatten()
loss = (pred - batch["y"]).pow(2).mean()
return {"loss": loss}
def configure_optimizers(self):
optim = torch.optim.SGD(
self.parameters(),
lr=1e-3,
# weight_decay=self.l2_lambda,
)
return {"optimizer": optim}
def get_species_token(sequence):
species = get_species(sequence)
if species not in SPECIES_TO_TOKEN:
return None
species_token = SPECIES_TO_TOKEN[species]
return (sequence, species_token)
def get_iglm_embeddings(
seqs,
iglm_model,
chain_token,
cache_path=None
):
if os.path.exists(cache_path):
with open(cache_path, "rb") as f:
lookup_table = pickle.load(f)
else:
pool = multiprocessing.Pool(processes=16)
pairs = list(tqdm(
pool.imap(
get_species_token,
seqs,
chunksize=10
), total=len(seqs)
))
pool.close()
pool.join()
pairs = [p for p in pairs if p is not None]
lookup_table = {}
for sequence, species_token in tqdm(pairs):
if species_token is None:
continue
token_seq = [chain_token, species_token] + list(sequence)
token_seq += [iglm_model.tokenizer.sep_token]
token_seq = torch.Tensor([
iglm_model.tokenizer.convert_tokens_to_ids(token_seq)
]).int().to(iglm_model.device)
with torch.no_grad():
out = iglm_model.model(
token_seq,
output_hidden_states=True
)
h = out.hidden_states[-1]
h = h.mean((0,1)).cpu().numpy()
lookup_table[sequence] = (species_token, h)
with open(cache_path, "wb") as f:
pickle.dump(lookup_table, f)
return lookup_table
def path_to_dataloader(
data_path,
scaler,
model_save_path,
labels,
iglm_model,
chain_token,
batch_size=512,
is_train=True,
):
df = pd.read_csv(data_path)
df["target"] = scaler.transform(df[labels])
df_seq_name = {
"[HEAVY]": "HeavyAA",
"[LIGHT]": "LightAA",
}
seq_name = df_seq_name[chain_token]
lookup_table = get_iglm_embeddings(
df[seq_name].values,
iglm_model,
chain_token,
cache_path=os.path.join(
model_save_path,
f"embed_cache_{'train' if is_train else 'val'}.pkl"
)
)
seq_arrays = df[[seq_name, "target"]].values
filtered_labels, hiddens = [], []
for sequence, label in tqdm(seq_arrays):
if sequence not in lookup_table:
continue
filtered_labels.append(label)
hiddens.append(lookup_table[sequence][1])
labels = np.array(filtered_labels)
hiddens = np.array(hiddens)
loader = DataLoader(
dataset=Dataset(hiddens, labels),
batch_size=batch_size,
shuffle=is_train, # Shuffle only train loader
num_workers=1,#multiprocessing.cpu_count() if multithread else 1,
pin_memory=True,
)
return loader
def train_guidance_model(
iglm_model,
train_data_path,
val_data_path,
labels,
model_save_dir,
chain_token,
):
scaler = StandardScaler()
train_df = pd.read_csv(train_data_path)
val_df = pd.read_csv(val_data_path)
targets = labels
train_targets = train_df[targets]
test_targets = val_df[targets]
scaler = StandardScaler().fit(pd.concat([train_targets, test_targets]))
paths = [train_data_path, val_data_path]
train_loader, val_loader = [
path_to_dataloader(
data_path,
scaler,
model_save_dir,
labels,
iglm_model,
chain_token,
is_train=i == 0,
) for i, data_path in enumerate(paths)
]
guidance_model = ClassificationHead().cuda()
trainer = pl.Trainer(
default_root_dir='.',
max_epochs=200,
check_val_every_n_epoch=1,
accelerator="gpu",
gpus=1,
enable_progress_bar=True,
)
trainer.fit(
model=guidance_model,
train_dataloaders=train_loader,
val_dataloaders=val_loader,
)
model_save_path = os.path.join(model_save_dir, f"guidance_model.pt")
torch.save(guidance_model.state_dict(), model_save_path)
def load_guidance_models(args):
labels = args.labels.split(",")
if not os.path.exists(args.guidance_model_dir):
os.makedirs(args.guidance_model_dir)
guidance_models = {}
for k,v in CHAIN_TOKENS.items():
guidance_model_dir = os.path.join(args.guidance_model_dir, k)
if not os.path.exists(guidance_model_dir):
os.makedirs(guidance_model_dir)
model_path = os.path.join(guidance_model_dir, f"guidance_model.pt")
if not os.path.exists(model_path):
print(f"Training guidance model for {k}")
train_guidance_model(
IgLM(),
args.train_data_path,
args.val_data_path,
labels,
guidance_model_dir,
v,
)
guidance_model = ClassificationHead()
guidance_model.load_state_dict(torch.load(model_path))
guidance_model.eval()
guidance_models[k] = guidance_model
return guidance_models