-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loaders.py
122 lines (103 loc) · 4.74 KB
/
data_loaders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import logging
from downstream_task.semeval.train import parse_semeval_file
from downstream_task.sentiment_classification.train import parse_pickle_file
from downstream_task.newsgroup_classification.train import parse_20newsgroup_file
from utils import load_embeddings, parse_conll_file, load_vocab
class DatasetManager:
def __init__(self, debug_mode=False):
self.test_vocabs = set()
self.oov = set()
self.test_embeddings = dict()
self.embeddings = dict()
self.test_sentences = []
self.valid_sentences = []
self.train_sentences = []
self.debug_mode = debug_mode
self.dataset_name = ''
logging.info("Loading data in debug mode: {}".format(debug_mode))
def __filter_sentences(self, attr, num):
if self.debug_mode:
return self.__getattribute__(attr)[:num]
else:
return self.__getattribute__(attr)
@property
def get_train_sentences(self):
return self.__filter_sentences('train_sentences', 50)
@property
def get_valid_sentences(self):
return self.__filter_sentences('valid_sentences', 20)
@property
def get_test_sentences(self):
return self.__filter_sentences('test_sentences', 0)
@property
def get_embeddings(self):
return self.embeddings
@property
def get_test_embeddings(self):
return self.test_embeddings
@property
def get_test_vocab(self):
return self.test_vocabs
@property
def get_oov(self):
return self.oov
class CoNLL(DatasetManager):
def __init__(self, embedding_dimension, debug_mode=False):
super().__init__(debug_mode)
self.dataset_name = 'conll'
path_embeddings = './data/glove_embeddings/glove.6B.{}d.txt'.format(
embedding_dimension)
self.embeddings = load_embeddings(path_embeddings)
try:
self.oov = load_vocab('./data/conll/oov.txt')
except FileNotFoundError:
pass
self.train_sentences = parse_conll_file('./data/conll/train.txt')
self.valid_sentences = parse_conll_file('./data/conll/valid.txt')
self.test_sentences = parse_conll_file('./data/conll/test.txt')
logging.debug('Loading {}d embeddings from : {}'.format(embedding_dimension, path_embeddings))
class Sentiment(DatasetManager):
def __init__(self, embedding_dimension, debug_mode=False):
super().__init__(debug_mode)
self.dataset_name = 'sentiment'
path_embeddings = './data/glove_embeddings/glove.6B.{}d.txt'.format(
embedding_dimension)
self.embeddings = load_embeddings(path_embeddings)
try:
self.oov = load_vocab('./data/sentiment/oov.txt')
except FileNotFoundError:
pass
self.train_sentences, _ = parse_pickle_file('./data/sentiment/train.pickle')
self.valid_sentences, _ = parse_pickle_file('./data/sentiment/dev.pickle')
self.test_sentences, _ = parse_pickle_file('./data/sentiment/test.pickle')
logging.debug('Loading {}d embeddings from : {}'.format(embedding_dimension, path_embeddings))
class SemEval(DatasetManager):
def __init__(self, embedding_dimension, debug_mode=False):
super().__init__(debug_mode)
self.dataset_name = 'scienceie'
path_embeddings = './data/glove_embeddings/glove.6B.{}d.txt'.format(
embedding_dimension)
self.embeddings = load_embeddings(path_embeddings)
try:
self.oov = load_vocab('./data/scienceie/oov.txt')
except FileNotFoundError:
pass
self.train_sentences, _ = parse_semeval_file('./data/scienceie/train_spacy.txt')
self.valid_sentences, _ = parse_semeval_file('./data/scienceie/valid_spacy.txt')
self.test_sentences, _ = parse_semeval_file('./data/scienceie/test_spacy.txt')
logging.debug('Loading {}d embeddings from : {}'.format(embedding_dimension, path_embeddings))
class NewsGroup(DatasetManager):
def __init__(self, embedding_dimension, debug_mode=False):
super().__init__(debug_mode)
self.dataset_name = '20newsgroup'
path_embeddings = './data/glove_embeddings/glove.6B.{}d.txt'.format(
embedding_dimension)
self.embeddings = load_embeddings(path_embeddings)
try:
self.oov = load_vocab('./data/20newsgroup/oov.txt')
except FileNotFoundError:
pass
self.train_sentences, _ = parse_20newsgroup_file('./data/20newsgroup/train.pickle')
self.valid_sentences, _ = parse_20newsgroup_file('./data/20newsgroup/dev.pickle')
self.test_sentences, _ = parse_20newsgroup_file('./data/20newsgroup/test.pickle')
logging.debug('Loading {}d embeddings from : {}'.format(embedding_dimension, path_embeddings))