-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsetup.py
executable file
·125 lines (117 loc) · 6.38 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
import sys
from setuptools import setup
from setuptools.command.install import install
from subprocess import check_output, call
from sys import platform
PACKAGE_NAME = 'jhu_primitives'
MINIMUM_PYTHON_VERSION = 3, 6
VERSION = '2020.1.9.1'
def check_python_version():
"""Exit when the Python version is too low."""
if sys.version_info < MINIMUM_PYTHON_VERSION:
sys.exit("Python {}.{}+ is required.".format(*MINIMUM_PYTHON_VERSION))
def read_package_variable(key):
"""Read the value of a variable from the package without importing."""
module_path = os.path.join(PACKAGE_NAME, '__init__.py')
with open(module_path) as module:
for line in module:
parts = line.strip().split(' ')
if parts and parts[0] == key:
return parts[-1].strip("'")
assert False, "'{0}' not found in '{1}'".format(key, module_path)
check_python_version()
setup(
# cmdclass={'install': CustomInstallCommand},
name=PACKAGE_NAME,
version=VERSION,
description='JHU Python interfaces for TA1 primitives for d3m',
long_description='A library wrapping JHU\'s Python interfaces for the D3M program\'s TA1 primitives.',
author='Hayden S. Helm, Joshua Agterberg, Bijan Varjavand, Anton Alyakin, Disa Mhembere, Eric Bridgeford, Youngser Park, Heather G. Patsolic, Tyler M. Tomita, Jesse L. Patsolic',
author_email="hhelm2@jhu.edu",
packages=[
PACKAGE_NAME,
'jhu_primitives.asgm_nomination',
'jhu_primitives.sgm_nomination',
'jhu_primitives.nearest_neighbor_nomination',
'jhu_primitives.euclidean_nomination',
'jhu_primitives.partial_procrustes',
'jhu_primitives.ase',
'jhu_primitives.gclass',
'jhu_primitives.gclust',
'jhu_primitives.load_graphs',
'jhu_primitives.lcc',
'jhu_primitives.lse',
'jhu_primitives.link_pred_graph_reader',
'jhu_primitives.link_pred_rc',
# 'jhu_primitives.oosase',
# 'jhu_primitives.ooslse',
#'jhu_primitives.sgc',
'jhu_primitives.sgm',
# 'jhu_primitives.sgvn',
'jhu_primitives.utils',
],
entry_points = {
'd3m.primitives': [
'graph_matching.euclidean_nomination.JHU=jhu_primitives.euclidean_nomination:EuclideanNomination',
'graph_matching.sgm_nomination.JHU=jhu_primitives.sgm_nomination:SgmNomination',
'graph_matching.asgm_nomination.JHU=jhu_primitives.asgm_nomination:AsgmNomination',
'graph_matching.nearest_neighbor_nomination.JHU=jhu_primitives.nearest_neighbor_nomination:NearestNeighborNomination',
'graph_matching.partial_procrustes.JHU=jhu_primitives.partial_procrustes:PartialProcrustes',
'data_transformation.adjacency_spectral_embedding.JHU=jhu_primitives.ase:AdjacencySpectralEmbedding',
'data_transformation.load_graphs.JHU=jhu_primitives.load_graphs:LoadGraphs',
'data_preprocessing.largest_connected_component.JHU=jhu_primitives.lcc:LargestConnectedComponent',
'classification.gaussian_classification.JHU=jhu_primitives.gclass:GaussianClassification',
'graph_clustering.gaussian_clustering.JHU=jhu_primitives.gclust:GaussianClustering',
'data_transformation.laplacian_spectral_embedding.JHU=jhu_primitives.lse:LaplacianSpectralEmbedding',
'link_prediction.data_conversion.JHU=jhu_primitives.link_pred_graph_reader:LinkPredictionGraphReader',
'link_prediction.rank_classification.JHU=jhu_primitives.link_pred_rc:LinkPredictionRankClassifier',
# 'data_transformation.out_of_sample_adjacency_spectral_embedding.JHU=jhu_primitives.oosase:OutOfSampleAdjacencySpectralEmbedding',
# 'data_transformation.out_of_sample_laplacian_spectral_embedding.JHU=jhu_primitives.ooslse:OutOfSampleLaplacianSpectralEmbedding',
#'vertex_nomination.spectral_vertex_nomination.JHU=jhu_primitives.sgvn:SingleGraphVertexNomination',
#'vertex_nomination.spectral_graph_clustering.JHU=jhu_primitives.sgc:SpectralGraphClustering',
'graph_matching.seeded_graph_matching.JHU=jhu_primitives.sgm:SeededGraphMatching'
]
},
# package_data = {'': ['*.r', '*.R']},
# include_package_data = True,
install_requires=['d3m', # jhu dependency
'typing', # jhu dependency
'scipy', # jhu dependency
# 'networkx', # jhu dependency
'numpy', # ==1.15.4', # jhu dependency'
# 'sklearn', # jhu dependency
'jinja2', # jhu dependency
'scipy', # jhu dependency
# 'lap', # unnecessary jhu dependency
'cython', # jhu dependency,
'lapjv==1.2.0',
'graspy>=0.0.2',
'graspologic',
'numba>=0.52.0',
'hyppo==0.1.3',
# Begin d3m dependency
# 'pytypes==1.0b5', # d3m dependency
# 'frozendict==1.2', # d3m dependency
# 'numpy==1.15.4', # d3m dependency
# 'jsonschema==2.6.0', # d3m dependency
# 'requests==2.19.1', # d3m dependency
# 'strict-rfc3339==0.7', # d3m dependency
# 'rfc3987==1.3.8', # d3m dependency
# 'webcolors==1.8.1', # d3m dependency
# 'dateparser==0.7.0', # d3m dependency
# 'pandas==0.23.4', # d3m dependency
'networkx' # ==2.2', # d3m dependency
# 'typing-inspect==0.3.1', # d3m dependency
# 'GitPython==2.1.11', # d3m dependency
# 'jsonpath-ng==1.4.3', # d3m dependency
# 'custom-inherit==2.2.0', # d3m dependency
# 'PyYAML==3.13', # d3m dependency
# 'pycurl==7.43.0.2', # d3m dependency
# 'pyarrow==0.11.1', # d3m dependency
# 'gputil==1.3.0', # d3m dependency
],
url='https://github.com/neurodata/primitives-interfaces',
dependency_links=['git+https://github.com/neurodata/graspy.git#egg=master'],
keywords = 'd3m_primitive'
)