-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsentence_bert_baseline.py
107 lines (96 loc) · 4.37 KB
/
sentence_bert_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import os
import random
import numpy as np
import torch
import pickle
import time
import csv
from dynaconf import settings
from web.embeddings import load_embedding
from web.evaluate import evaluate_similarity
from web.datasets.similarity import fetch_MEN, fetch_WS353, fetch_SimLex999, fetch_SimVerb3500, fetch_SCWS, fetch_RG65
from tqdm import tqdm
from six import iteritems
from sentence_transformers import SentenceTransformer
import argparse
class Experiment:
def __init__(self, model_name="bert-base-uncased", definition_path="./data/definitions/cpae/cpae_definitions.csv", cuda=True):
self.model_name = model_name
self.dataset = dataset
self.cuda = cuda
self.tasks = {
"MEN-dev": fetch_MEN(which="dev"),
"MEN-test": fetch_MEN(which="test"),
"SimVerb3500-dev": fetch_SimVerb3500(which="dev"),
"SimVerb3500-test": fetch_SimVerb3500(which="test"),
"WS353": fetch_WS353(),
"WS353-Sim": fetch_WS353(which="similarity"),
"WS353-Rel": fetch_WS353(which="relatedness"),
"SimLex999": fetch_SimLex999(),
"SCWS": fetch_SCWS(),
"RG": fetch_RG65()
}
#load pretrained model
self.model = SentenceTransformer(model_name)
#load definitions (definenda, definitions)
self.definitions = self.load_definitions_from_csv(definition_path)
#encode definitions
sentences = self.definitions[1]
#definitions are encoded by calling model.encode()
embeddings = self.model.encode(sentences, show_progress_bar = True)
#create embeddings dictionary
embeddings_dict = {}
index = 0
print("Saving the embeddings for evaluation...")
for definendum in self.definitions[0]:
embeddings_dict[definendum] = embeddings[index]
index += 1
#save embeddings for evaluation
out_emb_path = os.path.join(settings["output_path"], "embeddings")
outfile_path = os.path.join(out_emb_path, "model_dict_"+self.model_name)
if (not os.path.exists(out_emb_path)):
os.makedirs(out_emb_path)
pickle.dump(embeddings_dict, open(outfile_path, "wb"))
score = self.evaluate(outfile_path)
print("Avg score: ", score)
def load_definitions_from_csv(self, data):
definitions = {}
with open(data, newline='', encoding='ISO-8859-1') as csvfile:
spamreader = csv.reader(csvfile, delimiter=';', quoting=csv.QUOTE_NONE)
for row in spamreader:
if not row[2] in definitions:
definitions[row[2]] = row[3]
else:
definitions[row[2]] += " " + row[3]
return list(definitions.keys()), list(definitions.values())
def evaluate(self, embeddings_path):
#Load embeddings
embeddings = load_embedding(embeddings_path, format="dict", normalize=True, lower=True, clean_words=False)
# Calculate results using helper function
sp_correlations = []
for name, examples in iteritems(self.tasks):
score = evaluate_similarity(embeddings, examples.X, examples.y)
print(name, score)
sp_correlations.append(score)
#return average score
return np.mean(sp_correlations)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, default="cpae", nargs="?",
help="Which dataset to use: FB15k-237 or WN18RR.")
parser.add_argument("--model", type=str, default="poincare", nargs="?",
help="Which model to use: poincare or euclidean.")
parser.add_argument("--dim", type=int, default=300, nargs="?",
help="Embedding dimensionality.")
parser.add_argument("--cuda", type=bool, default=True, nargs="?",
help="Whether to use cuda (GPU) or not (CPU).")
args = parser.parse_args()
dataset = args.dataset
data_dir = "data/%s/" % dataset
torch.backends.cudnn.deterministic = True
seed = 40
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available:
torch.cuda.manual_seed_all(seed)
experiment = Experiment(model_name = "sentence-t5-large")