-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmulti_relational_training.py
192 lines (166 loc) · 8.87 KB
/
multi_relational_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import os
import random
import numpy as np
import torch
import pickle
import time
from collections import defaultdict
from dynaconf import settings
from definitions_learning.models.multi_relational.load_data import Data
from definitions_learning.models.multi_relational.model import *
from definitions_learning.models.multi_relational.rsgd import *
from web.embeddings import load_embedding
from web.evaluate import evaluate_similarity
from web.evaluate import evaluate_similarity_hyperbolic
from web.datasets.similarity import fetch_MEN, fetch_SimVerb3500
from tqdm import tqdm
from six import iteritems
import argparse
class Experiment:
def __init__(self, learning_rate=50, dim=40, nneg=50, model="poincare",
num_iterations=500, batch_size=128, dataset="wiktionary", cuda=False):
self.model_type = model
self.dataset = dataset
self.learning_rate = learning_rate
self.dim = dim
self.nneg = nneg
self.num_iterations = num_iterations
self.batch_size = batch_size
self.cuda = cuda
self.best_eval_score = 0.0
self.tasks = {
'SimVerb3500-dev': fetch_SimVerb3500(which='dev'),
'MEN-dev': fetch_MEN(which = "dev"),
}
def get_data_idxs(self, data):
data_idxs = [(self.entity_idxs[data[i][0]], self.relation_idxs[data[i][1]], \
self.entity_idxs[data[i][2]]) for i in range(len(data))]
return data_idxs
def get_er_vocab(self, data, idxs=[0, 1, 2]):
er_vocab = defaultdict(list)
for triple in data:
er_vocab[(triple[idxs[0]], triple[idxs[1]])].append(triple[idxs[2]])
return er_vocab
def evaluate(self, model, embeddings_path, embeddings_type = "poincare"):
#Load embeddings
embeddings = load_embedding(embeddings_path, format="dict", normalize=True, lower=True, clean_words=False)
# Calculate results using helper function
sp_correlations = []
for name, examples in iteritems(self.tasks):
if embeddings_type == "poincare":
score = evaluate_similarity_hyperbolic(embeddings, examples.X, examples.y)
print(name, score)
sp_correlations.append(score)
else:
score = evaluate_similarity(embeddings, examples.X, examples.y)
print(name, score)
sp_correlations.append(score)
#return average score
return np.mean(sp_correlations)
def train_and_eval(self):
print("Training the %s multi-relational model..." %self.model_type )
self.entity_idxs = {d.entities[i]:i for i in range(len(d.entities))}
self.relation_idxs = {d.relations[i]:i for i in range(len(d.relations))}
device = "cuda" if self.cuda else "cpu"
train_data_idxs = self.get_data_idxs(d.train_data)
print("Number of training data points: %d" % len(train_data_idxs))
if self.model_type == "poincare":
model = torch.jit.script(MuRP(d, self.dim))
else:
model = torch.jit.script(MuRE(d, self.dim))
param_names = [name for name, param in model.named_parameters()]
opt = RiemannianSGD(model.parameters(), lr=self.learning_rate, param_names=param_names)
if self.cuda:
model.cuda()
train_data_idxs_tensor = torch.tensor(train_data_idxs, device=device)
entity_idxs_lst = list(self.entity_idxs.values())
negsamples_tbl = torch.tensor(np.random.choice(entity_idxs_lst, size=(len(train_data_idxs) // self.batch_size, self.batch_size, self.nneg)),
device=device)
print("Starting training...")
for it in tqdm(range(1, self.num_iterations+1)):
model.train()
losses = torch.zeros((len(train_data_idxs) // self.batch_size) + 1, device=device)
batch_cnt = 0
train_data_idxs = train_data_idxs_tensor[torch.randperm(train_data_idxs_tensor.shape[0])]
for j in tqdm(range(0, len(train_data_idxs), self.batch_size)):
data_batch = train_data_idxs[j:j+self.batch_size]
negsamples = negsamples_tbl[torch.randint(0, len(train_data_idxs) // self.batch_size, (1,))].squeeze()
e1_idx = torch.tile(torch.unsqueeze(data_batch[:, 0], 0).T, (1, negsamples.shape[1]+1))
r_idx = torch.tile(torch.unsqueeze(data_batch[:, 1], 0).T, (1, negsamples.shape[1]+1))
e2_idx = torch.cat((torch.unsqueeze(data_batch[:, 2], 0).T, negsamples[:data_batch.shape[0]]), dim=1)
targets = torch.zeros(e1_idx.shape, device=device)
targets[:, 0] = 1
opt.zero_grad()
predictions = model.forward(e1_idx, r_idx, e2_idx)
loss = model.loss(predictions, targets)
loss.backward()
opt.step()
losses[batch_cnt] = loss.detach()
batch_cnt += 1
print("Iteration:", it)
print("Loss:", torch.mean(losses).item())
#start evaluation
model.eval()
with torch.no_grad():
#Saving the embeddings as a dictionary
print("Saving the embeddings for evaluation...")
embeddings_dict = {}
for entity in tqdm(self.entity_idxs):
if self.model_type == "poincare":
embeddings_dict[entity] = model.Eh.weight[self.entity_idxs[entity]].detach().cpu().numpy()
else:
embeddings_dict[entity] = model.E.weight[self.entity_idxs[entity]].detach().cpu().numpy()
out_emb_path = os.path.join(settings["output_path"], "embeddings")
out_model_path = os.path.join(settings["output_path"], "models")
outfile_path = os.path.join(out_emb_path, "model_dict_"+self.model_type+"_" + str(self.dim) + "_" + self.dataset)
if (not os.path.exists(out_emb_path)):
os.makedirs(out_emb_path)
if (not os.path.exists(out_model_path)):
os.makedirs(out_model_path)
pickle.dump(embeddings_dict, open(outfile_path, "wb"))
score = self.evaluate(model, outfile_path, self.model_type)
print("Evaluation score:", score)
if score > self.best_eval_score:
#Saving the embeddings of the best model
print("New best model, saving the embeddings...")
outfile_path = os.path.join(out_emb_path, "best_model_dict_" + self.model_type + "_" + str(self.dim) + "_" + self.dataset)
pickle.dump(embeddings_dict, open(outfile_path, "wb"))
self.best_eval_score = score
#Saving checkpoint for the best model
torch.save({ "epoch": it,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": opt.state_dict(),
"loss": losses,
}, os.path.join(out_model_path, "best_model_checkpoint_" + self.model_type + "_" + str(self.dim) + "_" + self.dataset+".pt"))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, default="wiktionary", nargs="?",
help="Which dataset to use: FB15k-237 or WN18RR.")
parser.add_argument("--model", type=str, default="poincare", nargs="?",
help="Which model to use: poincare or euclidean.")
parser.add_argument("--num_iterations", type=int, default=500, nargs="?",
help="Number of iterations.")
parser.add_argument("--batch_size", type=int, default=128, nargs="?",
help="Batch size.")
parser.add_argument("--nneg", type=int, default=50, nargs="?",
help="Number of negative samples.")
parser.add_argument("--lr", type=float, default=50, nargs="?",
help="Learning rate.")
parser.add_argument("--dim", type=int, default=40, nargs="?",
help="Embedding dimensionality.")
parser.add_argument("--cuda", type=bool, default=True, nargs="?",
help="Whether to use cuda (GPU) or not (CPU).")
args = parser.parse_args()
dataset = args.dataset
data_dir = "data/%s/" % dataset
torch.backends.cudnn.deterministic = True
seed = 40
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available:
torch.cuda.manual_seed_all(seed)
d = Data(data_dir=data_dir)
experiment = Experiment(learning_rate=args.lr, batch_size=args.batch_size,
num_iterations=args.num_iterations, dim=args.dim,
cuda=args.cuda, nneg=args.nneg, model=args.model, dataset = args.dataset)
experiment.train_and_eval()