This repository has been archived by the owner on Oct 11, 2024. It is now read-only.
forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathutils.py
928 lines (731 loc) · 31.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
"""Kernel test utils"""
import itertools
import random
from numbers import Number
from typing import Any, List, NamedTuple, Optional, Tuple, Union
import pytest
import torch
from vllm.attention.backends.abstract import (AttentionBackend,
AttentionMetadata, AttentionType)
from vllm.attention.backends.xformers import XFormersBackend
from vllm.utils import (STR_BACKEND_ENV_VAR, STR_XFORMERS_ATTN_VAL,
make_tensor_with_pad)
class QKVInputs(NamedTuple):
'''
Data structure for representing unpacked attention inputs,
query/key/values and their sequence lengths.
Attributes:
* {query,key,value}: unpacked (batch_size x padded_seq_len x
num_heads x head_size) attention inputs
* q_seq_lens: query sequence lengths list
* kv_seq_lens: shared key/value sequence lengths list
'''
query: torch.Tensor
key: torch.Tensor
value: torch.Tensor
q_seq_lens: List[int]
kv_seq_lens: List[int]
class QKVO(NamedTuple):
'''
Data structure for representing unpacked attention inputs,
alongside unpacked known-correct attention output
Attributes:
* qkv: unpacked (batch_size x padded_seq_len x
num_heads x head_size) attention inputs
* ideal_output: unpacked (batch_size x padded_seq_len x
num_heads x head_size) known-correct attention output
'''
qkv: QKVInputs
ideal_output: torch.Tensor
class PackedQKVInputs(NamedTuple):
'''
Data structure for representing packed attention inputs
Attributes:
* {query,key,value}: packed (number_of_tokens x num_heads
x head_size) attention inputs
* q_start_loc_list: list of query start locations within packed tensor
* kv_start_loc_list: shared list of key/value start locations within
packed tensor
* q_seq_lens: query sequence lengths list
* kv_seq_lens: shared key/value sequence lengths list
'''
query: torch.Tensor
key: torch.Tensor
value: torch.Tensor
q_start_loc_list: Optional[List[int]]
kv_start_loc_list: Optional[List[int]]
q_seq_lens: Optional[List[int]]
kv_seq_lens: Optional[List[int]]
class PackedQKVO(NamedTuple):
'''
Data structure for representing packed attention inputs,
alongside packed known-correct attention output
Attributes:
* packed_qkv: packed (number_of_tokens x num_heads
x head_size) attention inputs
* ideal_output: packed (number_of_tokens x num_heads
x head_size) known-correct attention output
'''
packed_qkv: Optional[PackedQKVInputs]
ideal_output: torch.Tensor
class KVMemoryMap(NamedTuple):
'''
Data structure for encapsulating KV cache memory mapping.
Attributes:
* block_tables: KV cache block tables
* slot_mapping: mapping of sequence offset to physical address
'''
block_tables: torch.Tensor
slot_mapping: torch.Tensor
class PhaseTestParameters(NamedTuple):
'''
Data structure for encapsulating the test parameters
for a given test "phase" (prefill or decode phase) and attention
scenario (encoder, decoder-self, encoder/decoder-cross)
Attributes:
* packed_qkvo: packed (number_of_tokens x num_heads
x head_size) attention inputs & known-correct
output
* kv_mmap: KV cache memory mapping, specific to this test phase &
attention scenario
'''
packed_qkvo: PackedQKVO
kv_mmap: Optional[KVMemoryMap]
def maybe_make_int_tensor(_list: Optional[List[int]],
device: Union[torch.device, str]) \
-> torch.Tensor:
'''
Convert Python int list to a 1D int torch.Tensor on `device`
Returns:
* If _list is not None: 1D int torch.Tensor on `device`
* None otherwise
'''
return None if _list is None else torch.tensor(
_list, dtype=torch.int, device=device)
def maybe_make_long_tensor(_list: Optional[List[int]],
device: Union[torch.device, str]) \
-> torch.Tensor:
'''
Convert Python int list to a 1D long torch.Tensor on `device`
Returns:
* If _list is not None: 1D long torch.Tensor on `device`
* None otherwise
'''
return None if _list is None else torch.tensor(
_list, dtype=torch.long, device=device)
def maybe_max(_list: Optional[List]) -> Optional[Number]:
'''
Returns:
* If _list is not None: max(_list)
* None otherwise
'''
return None if _list is None else max(_list)
def make_causal_mask(q_max_seq_len: int, kv_max_seq_len: int) \
-> torch.Tensor:
'''
Create a q_max_seq_len x kv_max_seq_len causal mask
Arguments:
* q_max_seq_len: query max seq len
* kv_max_seq_len: key/value max seq len
Returns:
* 2D tensor, q_max_seq_len x kv_max_seq_len
'''
# Create a matrix where entry (i, j) is True if i >= j
mask = torch.triu(torch.ones(q_max_seq_len, kv_max_seq_len), diagonal=1)
# Replace True with float('-inf') and False with 0
mask = mask.masked_fill(mask == 1,
float('-inf')).masked_fill(mask == 0, 0.0)
return mask
def override_backend_env_variable(mpatch: pytest.MonkeyPatch,
backend_name: str) -> None:
'''
Override the environment variable indicating the vLLM backend temporarily,
using pytest monkeypatch to ensure that the env vars get
reset once the test context exits.
Arguments:
* mpatch: pytest monkeypatch instance
* backend_name: attention backend name to force
'''
mpatch.setenv(STR_BACKEND_ENV_VAR, backend_name)
def ref_masked_attention(query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
scale: float,
custom_mask: Optional[torch.Tensor] = None,
q_seq_lens: Optional[List] = None,
kv_seq_lens: Optional[List] = None) -> torch.Tensor:
'''
"Golden" masked attention reference. Supports two types of masking:
* Basic attention mask, utilizing {q,kv}_seq_lens args to mask out
padding elements
* Custom attention mask, which can force an arbitrary mask tensor, i.e.
causal
Arguments:
* query: batch_size x q_padded_seq_len x num_heads x head_size
* key: batch_size x kv_padded_seq_len x num_heads x head_size
* value: batch_size x kv_padded_seq_len x num_heads x head_size
* scale: Attention scale factor
* custom_mask: custom attention mask; good place to inject a causal
attention mask
* q_seq_lens: list of unpadded query seq_lens for each batch index
* kv_seq_lens: list of unpadded key/value seq_lens for each batch index
Returns:
* Attention result, batch_size x q_padded_seq_len x num_heads x head_size
'''
assert q_seq_lens is not None
assert kv_seq_lens is not None
batch_size = query.shape[0]
assert (len(q_seq_lens) == batch_size)
assert (len(kv_seq_lens) == batch_size)
attn_weights = scale * torch.einsum("bqhd,bkhd->bhqk", query, key).float()
# Basic attention mask, derived from seq lens
if (q_seq_lens is not None) or (kv_seq_lens is not None):
attn_mask = torch.zeros_like(attn_weights)
if q_seq_lens is not None:
for bdx, plen in enumerate(q_seq_lens):
attn_mask[bdx, :, plen:, :] = -torch.inf
if kv_seq_lens is not None:
for bdx, plen in enumerate(kv_seq_lens):
attn_mask[bdx, :, :, plen:] = -torch.inf
attn_weights = attn_weights + attn_mask.float()
# Custom attention mask
if custom_mask is not None:
attn_weights = attn_weights + custom_mask.float()
attn_weights = torch.softmax(attn_weights, dim=-1).to(value.dtype)
out = torch.einsum("bhqk,bkhd->bqhd", attn_weights, value)
return out
def make_qkv(
batch_size: int,
max_q_seq_len: int,
max_kv_seq_len: Optional[int],
num_heads: int,
head_size: int,
device: Union[torch.device, str],
force_kv_seq_lens: Optional[List[int]] = None,
attn_type: AttentionType = AttentionType.ENCODER_DECODER,
force_max_len: bool = False,
) -> Tuple[QKVInputs, QKVInputs, QKVInputs]:
'''
Construct QKV test tensors for self- and cross-attention.
Generates three query/key/value triplets:
* "Baseline" query/key/value (for input to reference attention function)
* "Prefill" query/key/value (last sequence offset zero'd out, for use as
input to prefill kernel)
* "Decode" query/key/value (only the last sequence offset from baseline,
for use as input to decode kernel)
Each Q/K/V triplet is associated with a list of q seqlens and a list of k/v
seqlens
Arguments:
* batch_size
* max_q_seq_len: max query seq len
* max_kv_seq_len: max key/value seq len
* num_heads
* head_size
* is_encoder_decoder_attn: if True, query seqlen may differ from
key/value seqlen (as is often the case for cross-attention);
o/w, query/key/value seqlens match at each batch index
(max_kv_seq_len is unused)
* force_kv_seq_lens: if not None, overrides kv sequence lengths
* attn_type: encoder, decoder self, or enc/dec cross attention
* force_max_len: if True, all query seqlens are max_q_seq_len; o/w query
seqlens are random in [2,max_q_seq_lens]. Same for key/value seqlens
and max_kv_seq_len, unless forced by is_encoder_decoder_attn=False
* device: CPU or CUDA device
Returns:
* Overall QKVInputs structure (containing full unpacked Q/K/V tensors)
* Prefill QKVInputs structure (containing all but the last sequence offset)
* Decode QKVInputs structure (containing all only the last sequence offset)
'''
if force_max_len:
q_seq_lens = [max_q_seq_len for _ in range(batch_size)]
else:
q_seq_lens = [
random.randint(2, max_q_seq_len) for _ in range(batch_size)
]
kv_seq_lens = None
if force_kv_seq_lens is not None:
kv_seq_lens = force_kv_seq_lens
elif attn_type != AttentionType.ENCODER_DECODER:
# K,V seq lens match Q for self-attention
kv_seq_lens = q_seq_lens
else:
# K,V seq lens are distinct from Q seq lens & random
assert max_kv_seq_len is not None
if force_max_len:
kv_seq_lens = [max_kv_seq_len] * batch_size
else:
kv_seq_lens = [
random.randint(2, max_kv_seq_len) for _ in range(batch_size)
]
query = torch.rand(
(batch_size, max_q_seq_len, num_heads, head_size)).to(device)
key = torch.rand(
(batch_size, max_kv_seq_len, num_heads, head_size)).to(device)
value = torch.rand(
(batch_size, max_kv_seq_len, num_heads, head_size)).to(device)
prefill_query = torch.zeros(
(batch_size, max_q_seq_len, num_heads, head_size)).to(device)
prefill_key = torch.zeros(
(batch_size, max_kv_seq_len, num_heads, head_size)).to(device)
prefill_value = torch.zeros(
(batch_size, max_kv_seq_len, num_heads, head_size)).to(device)
decode_query = torch.zeros(
(batch_size, 1, num_heads, head_size)).to(device)
decode_key = torch.zeros((batch_size, 1, num_heads, head_size)).to(device)
decode_value = torch.zeros(
(batch_size, 1, num_heads, head_size)).to(device)
for bdx, (q_seq_len, kv_seq_len) in enumerate(zip(q_seq_lens,
kv_seq_lens)):
query[bdx, q_seq_len:, :, :] = 0
key[bdx, kv_seq_len:, :, :] = 0
value[bdx, kv_seq_len:, :, :] = 0
prefill_query[bdx,
0:(q_seq_len - 1), :, :] = query[bdx,
0:(q_seq_len - 1), :, :]
prefill_key[bdx,
0:(kv_seq_len - 1), :, :] = key[bdx,
0:(kv_seq_len - 1), :, :]
prefill_value[bdx, 0:(kv_seq_len -
1), :, :] = value[bdx, 0:(kv_seq_len - 1), :, :]
decode_query[bdx, :, :, :] = query[bdx,
(q_seq_len - 1):q_seq_len, :, :]
decode_key[bdx, :, :, :] = key[bdx, (kv_seq_len - 1):kv_seq_len, :, :]
decode_value[bdx, :, :, :] = value[bdx,
(kv_seq_len - 1):kv_seq_len, :, :]
prefill_q_seq_lens = [plen - 1 for plen in q_seq_lens]
prefill_kv_seq_lens = [plen - 1 for plen in kv_seq_lens]
decode_q_seq_lens = [1 for _ in q_seq_lens]
decode_kv_seq_lens = [1 for _ in kv_seq_lens]
return QKVInputs(query, # Overall QKV inputs
key,
value,
q_seq_lens,
kv_seq_lens), \
QKVInputs(prefill_query, # Prefill subset of QKV sequences
prefill_key,
prefill_value,
prefill_q_seq_lens,
prefill_kv_seq_lens), \
QKVInputs(
decode_query, # Decode subset of KV sequences
decode_key,
decode_value,
decode_q_seq_lens,
decode_kv_seq_lens)
def pack_tensor(
unpacked_tensor: torch.Tensor, seq_lens: List[int],
device: Union[torch.device, str]) -> Tuple[torch.Tensor, List[int]]:
'''
Pack a batch_size x padded_seq_len x num_heads x head_size tensor into an
unpadded number_of_tokens x num_heads x head_size tensor, where
number_of_tokens = sum(seq_lens)
Arguments:
* unpacked_tensor: batch_size x padded_seq_len x num_heads x head_size
* seq_lens: list of token counts for each seq
* device: CPU or CUDA device
Returns
* packed_tensor: number_of_tokens x num_heads x head_size
* start_loc_list: start idx of each batch elt in packed_tensor; [0] +
list(itertools.accumulate(seq_lens))
'''
num_tok = sum(seq_lens)
num_heads = unpacked_tensor.shape[-2]
head_size = unpacked_tensor.shape[-1]
start_loc_list = [0] + list(itertools.accumulate(seq_lens))
packed_tensor = torch.zeros((num_tok, num_heads, head_size), device=device)
for bdx, (seq_len, start_loc) in enumerate(zip(seq_lens, start_loc_list)):
packed_tensor[start_loc:(
start_loc + seq_len), :, :] = unpacked_tensor[bdx, :seq_len, :, :]
return packed_tensor, start_loc_list
def pack_qkv(qkv: QKVInputs, device: Union[torch.device,
str]) -> PackedQKVInputs:
'''
Individually pack each of Q, K and V, each with dimensions batch_size x
padded_seq_len x num_heads x head_size, into respective number_of_tokens x
num_heads x head_size tensors.
For Q, number_of_tokens = sum(q_seq_lens).
For K and V, number_of_tokens = sum(kv_seq_lens)
Arguments:
* qkv: Unpacked (batch_size x padded_seq_len x num_heads x head_size)
attention inputs
* device: CPU or CUDA device
Returns
* Packed (number_of_tokens x num_heads x head_size) QKV inputs
derived from unpacked inputs
'''
if qkv.query is None:
packed_query = None
q_start_loc_list = None
else:
packed_query, q_start_loc_list = pack_tensor(qkv.query,
qkv.q_seq_lens,
device=device)
packed_key, kv_start_loc_list = pack_tensor(qkv.key,
qkv.kv_seq_lens,
device=device)
packed_value, _ = pack_tensor(qkv.value, qkv.kv_seq_lens, device=device)
return PackedQKVInputs(packed_query, \
packed_key, \
packed_value, \
q_start_loc_list, \
kv_start_loc_list, \
None if q_start_loc_list is None else \
qkv.q_seq_lens, \
qkv.kv_seq_lens)
def make_backend(backend_name: str) -> AttentionBackend:
'''
Construct the backend instance determined by the backend_name string
argument.
"XFORMERS" -> construct xformers backend
TODO: other backends
Note: at time of writing the Attention wrapper automatically selects
its own backend for Attention.forward(); so the backend instance which
you generate with this function is not meant to be used for *running*
inference, but rather for generating compatible metadata structures
using backend.make_metadata()
Returns:
* Backend instance
'''
if backend_name == STR_XFORMERS_ATTN_VAL:
return XFormersBackend()
raise AssertionError(
f"Unrecognized backend_name {backend_name} for unit test")
def _make_metadata_tensors(
seq_lens: Optional[List[int]], context_lens: Optional[List[int]],
encoder_seq_lens: Optional[List[int]], device: Union[torch.device, str]
) -> Tuple[torch.Tensor, torch.Tensor, Any, Any, Optional[List[int]],
torch.Tensor, Optional[int]]:
'''
Build scalar & tensor values required to build attention metadata structure.
Arguments:
* seq_lens: list of token-counts for each decoder input seq
* context_lens: list of context length values for each seq
* encoder_seq_lens: list of token-counts for each encoder input seq
* device: CPU or CUDA device
Returns:
* seq_lens_tensor: decoder seq_lens list, as tensor
* context_lens_tensor: context_lens list, as tensor
* max_context_len: max(context_lens)
* max_seq_len: max(seq_lens)
* seq_start_loc: start idx of each sequence
* max_encoder_seq_len: encoder seq_lens list, as tensor
'''
seq_lens_tensor = maybe_make_int_tensor(seq_lens, device)
context_lens_tensor = maybe_make_int_tensor(context_lens, device)
max_context_len = maybe_max(context_lens)
max_seq_len = maybe_max(seq_lens)
encoder_seq_lens_tensor = maybe_make_int_tensor(encoder_seq_lens, device)
max_encoder_seq_len = None if encoder_seq_lens is None else \
max(encoder_seq_lens)
seq_start_loc = None
return seq_lens_tensor, \
context_lens_tensor, \
max_context_len, \
max_seq_len, \
seq_start_loc, \
encoder_seq_lens_tensor, \
max_encoder_seq_len
def make_kv_cache(num_blocks: int,
num_heads: int,
head_size: int,
block_size: int,
device: Union[torch.device, str],
default_val: float = 0.0) -> torch.Tensor:
'''
Create a fake KV cache.
Arguments:
* num_blocks: number of blocks in the KV cache
* num_heads: number of attention heads
* head_size: head dimension
* block_size: number of offsets within a block
* device: CPU or CUDA device
* default_val: initialization value for KV cache elements
Returns:
* kv_cache: 2 x num_blocks x (block_size * num_heads * head_size)
'''
kv_cache = torch.rand(
(2, num_blocks, block_size * num_heads * head_size)).to(device)
if default_val is not None:
kv_cache[:, :, :] = default_val
return kv_cache
def _num_tokens_to_min_blocks(num_tokens: int, block_size: int) -> int:
'''
Compute the minimum number of blocks required to hold num_tokens tokens,
given block_size
'''
return (num_tokens + block_size) // block_size
def make_empty_slot_mapping_tensor(device: Union[torch.device, str]):
return maybe_make_long_tensor([], device)
def make_empty_block_tables_tensor(device: Union[torch.device, str]):
return torch.tensor([], device=device)
def split_slot_mapping(slot_mapping_list: torch.Tensor, seq_lens: List[int],
device: Union[torch.device, str]):
'''
Split a slot mapping into valid prefill- and decode-phase slot mappings.
Context:
* Your goal is to test (1) prefill of N prompts, with prompt-lengths
{K_i \\forall i \\in [0,N)}, followed by (2) decoding of a single token
for all N prompts (N tokens total); the resultant sequence lengths
after decode would be {K_i + 1 for i \\in [0,N)}
* The test you want to do requires (1) having the prefill slot mapping
for all tokens present during prefill, the number of which is
M = \\sum_i{K_i}, and (2) having the decode slot mapping for all N
decoded tokens
This function consumes a single 1D slot mapping, which is the
concatenation of N slot mappings each of length K_i + 1 (corresponding
to the sequence lengths after decode), with a total length of
P = \\sum_i{K_i + 1} = M + N
The prefill-phase slot mapping results from excising the (K_i + 1)-th entry
from each of the N subsequences in the slot mapping (i.e. omitting the
decoded token's mapping.)
The N excised entries are appended to obtain the decode-phase slot mapping
Arguments:
* slot_mapping_list: Length-P 1D slot mapping (as List) reflecting all N
post-decode sequences
* seq_lens: List of N post-decode sequence lengths (K_i + 1 in the
description above)
* device: cuda, cpu, etc.
Returns:
* prefill_slot_mapping: Length-M 1D slot mapping (as Tensor)
reflecting all N prefill prompts
* decode_slot_mapping: Length-N 1D slot mapping (as Tensor) reflecting
all N decoded tokens
'''
prefill_slot_mapping = []
decode_slot_mapping = []
base_idx = 0
for seq_len in seq_lens:
prefill_slot_mapping.extend(slot_mapping_list[base_idx:(base_idx +
seq_len - 1)])
decode_slot_mapping.append(slot_mapping_list[base_idx + seq_len - 1])
base_idx += seq_len
return maybe_make_long_tensor(prefill_slot_mapping, device), \
maybe_make_long_tensor(decode_slot_mapping, device)
def make_block_tables_slot_mapping(
block_size: int,
seq_lens: List[int],
device: Union[torch.device, str],
block_base_addr: int = 0) -> Tuple[torch.Tensor, List[int], int]:
'''
Construct fake block tables & slot mappings.
For a sequence with num_tokens tokens the minimum number
of required KV cache blocks is
num_blocks = (num_tokens + block_size) // block_size
Then the minimum KV cache size in blocks is
total_cache_blocks = sum(num_blocks for all seqs)
Then, the blocktable mapping counts downward from
block_base_addr + total_cache_blocks
to
block_base_addr
The constructed block-tables and slot-mapping are sized to the
lengths of the sequences in their entirety (as reflected by seq_lens),
i.e. the total of prefill prompt tokens + decoded tokens.
Arguments:
* block_size: number of offsets per block
* seq_lens: list of token-counts for each sequence
* block_base_addr: the block table base address
* device: CPU or CUDA device
Return:
* block_tables_tensor: block table for sequence
* slot_mapping_list: slot mapping for sequence
* max_block_idx: the highest block address within this block table
'''
# Provision minimum number of KV cache blocks
num_blocks_list = [
_num_tokens_to_min_blocks(num_tokens, block_size)
for num_tokens in seq_lens
]
max_block_table_len = max(num_blocks_list)
block_table_pad_tokens = 10
block_tables = []
slot_mapping_list = []
# Compute uppermost address of block table
total_cache_blocks = sum(num_blocks_list)
block_base_idx = block_base_addr + total_cache_blocks
max_block_idx = block_base_idx
for sdx, num_tokens in enumerate(seq_lens):
num_blocks = num_blocks_list[sdx]
block_table = list(
range(block_base_idx, block_base_idx - num_blocks, -1))
for idx in range(num_tokens):
mapping_value = (
idx % block_size) + block_table[idx // block_size] * block_size
slot_mapping_list.append(mapping_value)
block_base_idx -= num_blocks
block_tables.append(block_table)
block_tables_tensor = make_tensor_with_pad(
block_tables,
max_len=max_block_table_len + block_table_pad_tokens,
pad=0,
dtype=torch.int,
device=device,
)
return block_tables_tensor, \
slot_mapping_list, \
max_block_idx
def make_test_metadata(
attn_backend: AttentionBackend,
is_prompt: bool,
seq_lens: Optional[List[int]],
decoder_test_params: Optional[PhaseTestParameters],
device: Union[torch.device, str],
encoder_test_params: Optional[PhaseTestParameters] = None,
cross_test_params: Optional[PhaseTestParameters] = None
) -> AttentionMetadata:
'''
Construct fake attention metadata for a given test phase
(prefill-phase or decode-phase).
encoder_test_params and cross_test_params arguments allow encoder
attention and enc/dec cross-attention (respectively) to use distinct
metadata values from decoder self-attention (decoder_test_params.)
if encoder_test_params and cross_test_params are None, the attention
metadata will support decoder-only scenario.
Assumptions:
* No chunked prefill -> a batch is 100% prefill or 100% decode, never both
Arguments:
* attn_backend: Backend for sourcing attention kernels
* is_prompt: prefill if True, o/w decode
* seq_lens: list of token counts for each sequence
* decoder_test_params: decoder self-attention test params;
this function requires
kv_mmap (memory mapping) field
* device: CPU or CUDA device
* encoder_test_params: encoder attention test params;
this function requires encoder query
sequence lengths field. If None,
encoder query sequence lengths are
treated as None
* cross_test_params: enc/dec cross-attention test params;
this function requires kv_mmap field.
If None, KV cache memory map data
structures are treated as None
Return:
* AttentionMetadata structure
'''
# Decoder self-attention memory mapping
# decoder_test_params is None signals encoder-only
# scenario, so kv_mmap is None
kv_mmap = None if decoder_test_params is None else \
decoder_test_params.kv_mmap
# This function constructs metadata assuming no chunked prefill,
# i.e. 100% prefill tokens or 100% decode tokens
#
# - If is_prompt, num_prefills_or_decodes is the number of prefills
# and num_prefill_or_decode_tokens is the number of prefill tokens
# - If not is_prompt, num_prefills_or_decodes is the number of decodes
# and num_prefill_or_decode_tokens is the number of decode tokens
#
# seq_lens is None signals encoder-only
# scenario, in which case num_prefills_or_decodes and
# num_prefill_or_decode_tokens are unused
num_prefills_or_decodes = None if seq_lens is None else \
len(seq_lens)
num_prefill_or_decode_tokens = None if seq_lens is None else \
(sum(seq_lens) if is_prompt else len(seq_lens))
# Seems for non-prefix-caching scenarios context_lens
# is never needed
context_lens = None
if encoder_test_params is None:
encoder_seq_lens = None
num_encoder_tokens = None
else:
# Encoder/decoder or encoder-only models only:
# * Extract encoder input sequence lengths
assert encoder_test_params.packed_qkvo.packed_qkv is not None
encoder_seq_lens = encoder_test_params.packed_qkvo.packed_qkv.q_seq_lens
num_encoder_tokens = None if encoder_seq_lens is None else \
(sum(encoder_seq_lens))
if cross_test_params is None:
cross_kv_mmap = None
else:
# Encoder/decoder or encoder-only models only:
# * Extract *cross-attention* slot_mapping and block table
# (kv_mmap)
cross_kv_mmap = cross_test_params.kv_mmap
if is_prompt:
# Prefill-phase scenario
num_prefills = num_prefills_or_decodes
num_prefill_tokens = num_prefill_or_decode_tokens
num_decode_tokens = 0
seq_lens_tensor, \
context_lens_tensor, \
_, \
_, \
_, \
encoder_seq_lens_tensor, \
max_encoder_seq_len = _make_metadata_tensors(seq_lens,
context_lens,
encoder_seq_lens,
device=device)
return attn_backend.make_metadata(
num_prefills=num_prefills,
slot_mapping=None if kv_mmap is None else \
kv_mmap.slot_mapping,
num_prefill_tokens=num_prefill_tokens,
num_decode_tokens=num_decode_tokens,
seq_lens=seq_lens,
seq_lens_tensor=seq_lens_tensor,
max_prefill_seq_len=None if seq_lens is None else max(seq_lens),
max_decode_seq_len=0,
context_lens_tensor=context_lens_tensor,
block_tables=None if kv_mmap is None else \
kv_mmap.block_tables,
use_cuda_graph=False,
num_encoder_tokens=num_encoder_tokens,
encoder_seq_lens=encoder_seq_lens,
encoder_seq_lens_tensor=encoder_seq_lens_tensor,
max_encoder_seq_len=max_encoder_seq_len,
cross_slot_mapping=None if cross_kv_mmap is None else \
cross_kv_mmap.slot_mapping,
cross_block_tables=None if cross_kv_mmap is None else \
cross_kv_mmap.block_tables)
else: # not is_prompt
# Decode-phase scenario
assert kv_mmap is not None
assert num_prefill_or_decode_tokens is not None
assert seq_lens is not None
num_prefills = 0
num_prefill_tokens = 0
num_decode_tokens = num_prefill_or_decode_tokens
seq_lens_tensor, \
context_lens_tensor, \
_, \
_, \
_, \
encoder_seq_lens_tensor, \
max_encoder_seq_len = _make_metadata_tensors(seq_lens,
context_lens,
encoder_seq_lens,
device=device)
return attn_backend.make_metadata(
num_prefills=num_prefills,
slot_mapping=kv_mmap.slot_mapping,
num_prefill_tokens=num_prefill_tokens,
num_decode_tokens=num_decode_tokens,
seq_lens=seq_lens,
seq_lens_tensor=seq_lens_tensor,
max_prefill_seq_len=0,
max_decode_seq_len=max(seq_lens),
context_lens_tensor=context_lens_tensor,
block_tables=kv_mmap.block_tables,
use_cuda_graph=False,
num_encoder_tokens=num_encoder_tokens,
encoder_seq_lens=encoder_seq_lens,
encoder_seq_lens_tensor=encoder_seq_lens_tensor,
max_encoder_seq_len=max_encoder_seq_len,
cross_slot_mapping=None if cross_kv_mmap is None else \
cross_kv_mmap.slot_mapping,
cross_block_tables=None if cross_kv_mmap is None else \
cross_kv_mmap.block_tables)
def assert_actual_matches_ideal(test_params: PhaseTestParameters,
output_under_test: torch.Tensor) -> None:
'''
Assert that observed output matches the ideal output
contained in the test parameters data structure.
Arguments:
* test_params: Test parameters including packed ideal output
* output_under_test: actually observed output value
'''
ideal_output = test_params.packed_qkvo.ideal_output
assert torch.allclose(ideal_output,
output_under_test.view_as(ideal_output))