给你一个整数 n
表示某所大学里课程的数目,编号为 1
到 n
,数组 dependencies
中, dependencies[i] = [xi, yi]
表示一个先修课的关系,也就是课程 xi
必须在课程 yi
之前上。同时你还有一个整数 k
。
在一个学期中,你 最多 可以同时上 k
门课,前提是这些课的先修课在之前的学期里已经上过了。
请你返回上完所有课最少需要多少个学期。题目保证一定存在一种上完所有课的方式。
示例 1:
输入:n = 4, dependencies = [[2,1],[3,1],[1,4]], k = 2 输出:3 解释:上图展示了题目输入的图。在第一个学期中,我们可以上课程 2 和课程 3 。然后第二个学期上课程 1 ,第三个学期上课程 4 。
示例 2:
输入:n = 5, dependencies = [[2,1],[3,1],[4,1],[1,5]], k = 2 输出:4 解释:上图展示了题目输入的图。一个最优方案是:第一学期上课程 2 和 3,第二学期上课程 4 ,第三学期上课程 1 ,第四学期上课程 5 。
示例 3:
输入:n = 11, dependencies = [], k = 2 输出:6
提示:
1 <= n <= 15
1 <= k <= n
0 <= dependencies.length <= n * (n-1) / 2
dependencies[i].length == 2
1 <= xi, yi <= n
xi != yi
- 所有先修关系都是不同的,也就是说
dependencies[i] != dependencies[j]
。 - 题目输入的图是个有向无环图。