-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathReedSolomon.java
440 lines (366 loc) · 16.8 KB
/
ReedSolomon.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
/*
* Reed-Solomon error-correcting code decoder (Java)
*
* Copyright (c) 2017 Project Nayuki
* All rights reserved. Contact Nayuki for licensing.
* https://www.nayuki.io/page/reed-solomon-error-correcting-code-decoder
*/
import java.lang.reflect.Array;
import java.util.Arrays;
import java.util.Objects;
/**
* Performs Reed-Solomon encoding and decoding. This object can encode a message into a codeword.
* The codeword can have some values modified by external code. Then this object can try
* to decode the codeword, and under some circumstances can reproduce the original message.
* <p>This class is immutable and thread-safe, but the argument arrays passed into methods are not thread-safe.</p>
*/
public final class ReedSolomon<E> {
/*---- Fields ----*/
/** The number of values in each message. Always at least 1. */
public final int messageLen;
/** The number of error correction values to expand the message by. Always at least 1. */
public final int eccLen;
/** The number of values in each codeword, equal to messageLen + eccLen. Always at least 2. */
public final int codewordLen;
// The field for message and codeword values, and for performing arithmetic operations on values. Not null.
private final Field<E> f;
// An element of the field whose powers generate all the non-zero elements of the field. Not null.
private final E generator;
// The class object for the actual type parameter E, which is used in newArray(). Not null.
private Class<E> elementType;
/*---- Constructor ----*/
/**
* Constructs a Reed-Solomon encoder-decoder with the specified field, lengths, and other parameters.
* <p>Note: The class argument is used like this:
* {@code ReedSolomon<Integer> rs = new ReedSolomon<>(f, gen, Integer.class, msgLen, eccLen);}</p>
* @param f the field for all values and operations (not {@code null})
* @param gen a generator of the field {@code f} (not {@code null})
* @param elemType the class object for the type parameter {@code E} (not {@code null})
* @param msgLen the length of message arrays, which must be positive
* @param eccLen the number of values to expand each message by, which must be positive
* @throws NullPointerException if any of the object arguments is null
* @throws IllegalArgumentException if msgLen ≤ 0, eccLen ≤ 0, or mlgLen + eccLen > Integer.MAX_VALUE
*/
public ReedSolomon(Field<E> f, E gen, Class<E> elemType, int msgLen, int eccLen) {
// Check arguments
Objects.requireNonNull(f);
Objects.requireNonNull(gen);
Objects.requireNonNull(elemType);
if (msgLen <= 0 || eccLen <= 0 || Integer.MAX_VALUE - msgLen < eccLen)
throw new IllegalArgumentException("Invalid message or ECC length");
// Assign fields
this.f = f;
this.generator = gen;
this.elementType = elemType;
this.messageLen = msgLen;
this.eccLen = eccLen;
this.codewordLen = msgLen + eccLen;
}
/*---- Encoder methods ----*/
/**
* Returns a new array representing the codeword produced by encoding the specified message.
* If the message has the correct length and all its values are
* valid in the field, then this method is guaranteed to succeed.
* @param message the message to encode, whose length must equal {@code this.messageLen}
* @return a new array representing the codeword values
* @throws NullPointerException if the message array or any of its elements are {@code null}
* @throws IllegalArgumentException if the message array has the wrong length
*/
public E[] encode(E[] message) {
// Check arguments
Objects.requireNonNull(message);
if (message.length != messageLen)
throw new IllegalArgumentException("Invalid message length");
// Make the generator polynomial (this doesn't depend on the message)
E[] genPoly = makeGeneratorPolynomial();
// Compute the remainder ((message(x) * x^eccLen) mod genPoly(x)) by performing polynomial division.
// Process message bytes (polynomial coefficients) from the highest monomial power to the lowest power
E[] eccPoly = newArray(eccLen);
Arrays.fill(eccPoly, f.zero());
for (int i = messageLen - 1; i >= 0; i--) {
E factor = f.add(message[i], eccPoly[eccLen - 1]);
System.arraycopy(eccPoly, 0, eccPoly, 1, eccLen - 1);
eccPoly[0] = f.zero();
for (int j = 0; j < eccLen; j++)
eccPoly[j] = f.subtract(eccPoly[j], f.multiply(genPoly[j], factor));
}
// Negate the remainder
for (int i = 0; i < eccPoly.length; i++)
eccPoly[i] = f.negate(eccPoly[i]);
// Concatenate the message and ECC polynomials
E[] result = newArray(codewordLen);
System.arraycopy(eccPoly, 0, result, 0, eccLen);
System.arraycopy(message, 0, result, eccLen, messageLen);
return result;
}
// Computes the generator polynomial by multiplying powers of the generator value:
// genPoly(x) = (x - gen^0) * (x - gen^1) * ... * (x - gen^(eccLen-1)).
// The resulting array of coefficients is in little endian, i.e. from lowest to highest power, except
// that the very highest power (the coefficient for the x^eccLen term) is omitted because it's always 1.
// The result of this method can be pre-computed because it doesn't depend on the message to be encoded.
private E[] makeGeneratorPolynomial() {
// Start with the polynomial of 1*x^0, which is the multiplicative identity
E[] result = newArray(eccLen);
Arrays.fill(result, f.zero());
result[0] = f.one();
E genPow = f.one();
for (int i = 0; i < eccLen; i++) {
// At this point, genPow == generator^i.
// Multiply the current genPoly by (x - generator^i)
for (int j = eccLen - 1; j >= 0; j--) {
result[j] = f.multiply(f.negate(genPow), result[j]);
if (j >= 1)
result[j] = f.add(result[j - 1], result[j]);
}
genPow = f.multiply(generator, genPow);
}
return result;
}
/*---- Decoder methods ----*/
/**
* Attempts to decode the specified codeword with the maximum error-correcting
* capability allowed, returning either a best-guess message or {@code null}.
* <p>If the number of erroneous values in the codeword is less than or equal to floor(eccLen / 2),
* then decoding is guaranteed to succeed. Otherwise an explicit failure ({@code null} answer)
* is most likely, but wrong answer and right answer are also possible too.</p>
* @param codeword the codeword to decode, whose length must equal {@code this.codewordLen}
* @return a new array representing the decoded message, or {@code null} to indicate failure
* @throws NullPointerException if the codeword is {@code null}
* @throws IllegalArgumentException if the codeword array has the wrong length
*/
public E[] decode(E[] codeword) {
return decode(codeword, eccLen / 2);
}
/**
* Attempts to decode the specified codeword with the specified level of
* error-correcting capability, returning either a best-guess message or {@code null}.
* <p>If the number of erroneous values in the codeword is less than or equal to numErrorsToCorrect,
* then decoding is guaranteed to succeed. Otherwise an explicit failure ({@code null} answer)
* is most likely, but wrong answer and right answer are also possible too.</p>
* @param codeword the codeword to decode, whose length must equal {@code this.codewordLen}
* @param numErrorsToCorrect the number of errors in the codeword to try to fix,
* which must be between 0 to floor(eccLen / 2), inclusive
* @return a new array representing the decoded message, or {@code null} to indicate failure
* @throws NullPointerException if the codeword is {@code null}
* @throws IllegalArgumentException if the codeword array has the wrong length,
* or numErrorsToCorrect is out of range
*/
public E[] decode(E[] codeword, int numErrorsToCorrect) {
// Check arguments
Objects.requireNonNull(codeword);
if (codeword.length != codewordLen)
throw new IllegalArgumentException("Invalid codeword length");
if (numErrorsToCorrect < 0 || numErrorsToCorrect > eccLen / 2)
throw new IllegalArgumentException("Number of errors to correct is out of range");
// Calculate and check syndromes
E[] syndromes = calculateSyndromes(codeword);
if (!areAllZero(syndromes)) {
// At this point, we know the codeword must have some errors
if (numErrorsToCorrect == 0)
return null; // Only detect but not fix errors
// Try to solve for the error locator polynomial
E[] errLocPoly = calculateErrorLocatorPolynomial(syndromes, numErrorsToCorrect);
if (errLocPoly == null)
return null;
// Try to find the codeword indexes where errors might have occurred
int[] errLocs = findErrorLocations(errLocPoly, numErrorsToCorrect);
if (errLocs == null || errLocs.length == 0)
return null;
// Try to find the error values at these indexes
E[] errVals = calculateErrorValues(errLocs, syndromes);
if (errVals == null)
return null;
// Perform repairs to the codeword with the information just derived
E[] newCodeword = fixErrors(codeword, errLocs, errVals);
// Final sanity check by recomputing syndromes
E[] newSyndromes = calculateSyndromes(newCodeword);
if (!areAllZero(newSyndromes))
throw new AssertionError();
codeword = newCodeword;
}
// At this point, all syndromes are zero.
// Extract the message part of the codeword
return Arrays.copyOfRange(codeword, eccLen, codeword.length);
}
// Returns a new array representing the sequence of syndrome values for the given codeword.
// To summarize the math, syndrome[i] = codeword(generator^i).
private E[] calculateSyndromes(E[] codeword) {
// Check arguments
Objects.requireNonNull(codeword);
if (codeword.length != codewordLen)
throw new IllegalArgumentException();
// Evaluate the codeword polynomial at generator powers
E[] result = newArray(eccLen);
E genPow = f.one();
for (int i = 0; i < result.length; i++) {
result[i] = evaluatePolynomial(codeword, genPow);
genPow = f.multiply(generator, genPow);
}
return result;
}
// Returns a new array representing the coefficients of the error locator polynomial
// in little endian, or null if the syndrome values imply too many errors to handle.
private E[] calculateErrorLocatorPolynomial(E[] syndromes, int numErrorsToCorrect) {
// Check arguments
Objects.requireNonNull(syndromes);
if (syndromes.length != eccLen || numErrorsToCorrect <= 0 || numErrorsToCorrect > syndromes.length / 2)
throw new IllegalArgumentException();
// Copy syndrome values into augmented matrix
Matrix<E> matrix = new Matrix<>(numErrorsToCorrect, numErrorsToCorrect + 1, f);
for (int r = 0; r < matrix.rowCount(); r++) {
for (int c = 0; c < matrix.columnCount(); c++) {
E val = syndromes[r + c];
if (c == matrix.columnCount() - 1)
val = f.negate(val);
matrix.set(r, c, val);
}
}
// Solve the system of linear equations
matrix.reducedRowEchelonForm();
// Create result vector filled with zeros. Note that columns without a pivot
// will yield variables that stay at the default value of zero
E[] result = newArray(numErrorsToCorrect + 1);
Arrays.fill(result, f.zero());
result[0] = f.one(); // Constant term is always 1, regardless of the matrix
// Find the column of the pivot in each row, and set the
// appropriate output variable's value based on the column index
outer:
for (int r = 0, c = 0; r < matrix.rowCount(); r++) {
// Advance the column index until a pivot is found, but handle specially if
// the rightmost column is identified as a pivot or if no column is a pivot
while (true) {
if (c == matrix.columnCount())
break outer;
else if (f.equals(matrix.get(r, c), f.zero()))
c++;
else if (c == matrix.columnCount() - 1)
return null; // Linear system is inconsistent
else
break;
}
// Copy the value in the rightmost column to the result vector
result[numErrorsToCorrect - c] = matrix.get(r, numErrorsToCorrect);
}
return result;
}
// Returns a new array that represents indexes into the codeword array where the value
// might be erroneous, or null if it is discovered that the decoding process is impossible.
// This method tries to find roots of the error locator polynomial by brute force.
private int[] findErrorLocations(E[] errLocPoly, int maxSolutions) {
// Check arguments
Objects.requireNonNull(errLocPoly);
if (maxSolutions <= 0 || maxSolutions > codewordLen)
throw new IllegalArgumentException();
// Create temporary buffer for roots found
int[] indexesFound = new int[maxSolutions];
int numFound = 0;
// Evaluate errLocPoly(generator^-i) for 0 <= i < codewordLen
E genRec = f.reciprocal(generator);
E genRecPow = f.one();
for (int i = 0; i < codewordLen; i++) {
// At this point, genRecPow == generator^-i
E polyVal = evaluatePolynomial(errLocPoly, genRecPow);
if (f.equals(polyVal, f.zero())) {
if (numFound >= indexesFound.length)
return null; // Too many solutions
indexesFound[numFound] = i;
numFound++;
}
genRecPow = f.multiply(genRec, genRecPow);
}
return Arrays.copyOf(indexesFound, numFound);
}
// Returns a new array representing the error values/magnitudes at the given error locations,
// or null if the information given is inconsistent (thus decoding is impossible).
// If the result of this method is not null, then after fixing the codeword it is guaranteed
// to have all zero syndromes (but it could be the wrong answer, unequal to the original message).
private E[] calculateErrorValues(int[] errLocs, E[] syndromes) {
// Check arguments
Objects.requireNonNull(errLocs);
Objects.requireNonNull(syndromes);
if (syndromes.length != eccLen)
throw new IllegalArgumentException();
// Calculate and copy values into matrix
Matrix<E> matrix = new Matrix<>(syndromes.length, errLocs.length + 1, f);
for (int c = 0; c < matrix.columnCount() - 1; c++) {
E genPow = pow(generator, errLocs[c]);
E genPowPow = f.one();
for (int r = 0; r < matrix.rowCount(); r++) {
matrix.set(r, c, genPowPow);
genPowPow = f.multiply(genPow, genPowPow);
}
}
for (int r = 0; r < matrix.rowCount(); r++)
matrix.set(r, matrix.columnCount() - 1, syndromes[r]);
// Solve matrix and check basic consistency
matrix.reducedRowEchelonForm();
if (!f.equals(matrix.get(matrix.columnCount() - 1, matrix.columnCount() - 1), f.zero()))
return null; // System of linear equations is inconsistent
// Check that the top left side equals an identity matrix,
// and extract the rightmost column as result vector
E[] result = newArray(errLocs.length);
for (int i = 0; i < result.length; i++) {
if (!f.equals(matrix.get(i, i), f.one()))
return null; // Linear system is under-determined; no unique solution
result[i] = matrix.get(i, matrix.columnCount() - 1);
}
return result;
}
// Returns a new codeword representing the given codeword with the given errors subtracted.
// Always succeeds, as long as the array values are well-formed.
private E[] fixErrors(E[] codeword, int[] errLocs, E[] errVals) {
// Check arguments
Objects.requireNonNull(codeword);
Objects.requireNonNull(errLocs);
Objects.requireNonNull(errVals);
if (codeword.length != codewordLen || errLocs.length != errVals.length)
throw new IllegalArgumentException();
// Clone the codeword and change values at specific indexes
E[] result = codeword.clone();
for (int i = 0; i < errLocs.length; i++)
result[errLocs[i]] = f.subtract(result[errLocs[i]], errVals[i]);
return result;
}
/*---- Simple utility methods ----*/
// Returns a new array of the given length with E as the actual element type.
// This method exists so that unchecked generic operations are confined in one place here.
@SuppressWarnings("unchecked")
private E[] newArray(int len) {
if (len < 0)
throw new NegativeArraySizeException();
return (E[])Array.newInstance(elementType, len);
}
// Returns the value of the given polynomial at the given point. The polynomial is represented
// in little endian. In other words, this method evaluates result = polynomial(point)
// = polynomial[0]*point^0 + polynomial[1]*point^1 + ... + ponylomial[len-1]*point^(len-1).
private E evaluatePolynomial(E[] polynomial, E point) {
Objects.requireNonNull(polynomial);
Objects.requireNonNull(point);
// Horner's method
E result = f.zero();
for (int i = polynomial.length - 1; i >= 0; i--) {
result = f.multiply(point, result);
result = f.add(polynomial[i], result);
}
return result;
}
// Tests whether all elements of the given array are equal to the field's zero element.
private boolean areAllZero(E[] array) {
Objects.requireNonNull(array);
for (E val : array) {
if (!f.equals(val, f.zero()))
return false;
}
return true;
}
// Returns the given field element raised to the given power. The power must be non-negative.
private E pow(E base, int exp) {
Objects.requireNonNull(base);
if (exp < 0)
throw new UnsupportedOperationException();
E result = f.one();
for (int i = 0; i < exp; i++)
result = f.multiply(base, result);
return result;
}
}