-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtirg_model.py
65 lines (49 loc) · 2.27 KB
/
tirg_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import torch
import torch.nn as nn
from model import BaseModel
from utils import l2norm
class ConCatModule(nn.Module):
def __init__(self):
super(ConCatModule, self).__init__()
def forward(self, x):
x = torch.cat(x, dim=1)
return x
class TIRG(BaseModel):
"""
The TIRG model.
Implementation derived (except for BaseModel-inherence) from
https://github.com/google/tirg (downloaded on July 23th 2020).
The method is described in Nam Vo, Lu Jiang, Chen Sun, Kevin Murphy, Li-Jia
Li, Li Fei-Fei, James Hays. "Composing Text and Image for Image Retrieval -
An Empirical Odyssey" CVPR 2019. arXiv:1812.07119
"""
def __init__(self, word2idx, opt):
super(TIRG, self).__init__(word2idx, opt)
# --- modules
self.a = nn.Parameter(torch.tensor([1.0, 1.0])) # changed the second coeff from 10.0 to 1.0
self.gated_feature_composer = nn.Sequential(
ConCatModule(), nn.BatchNorm1d(2 * self.embed_dim), nn.ReLU(),
nn.Linear(2 * self.embed_dim, self.embed_dim))
self.res_info_composer = nn.Sequential(
ConCatModule(), nn.BatchNorm1d(2 * self.embed_dim), nn.ReLU(),
nn.Linear(2 * self.embed_dim, 2 * self.embed_dim), nn.ReLU(),
nn.Linear(2 * self.embed_dim, self.embed_dim))
def query_compositional_embedding(self, main_features, modifying_features):
f1 = self.gated_feature_composer((main_features, modifying_features))
f2 = self.res_info_composer((main_features, modifying_features))
f = torch.sigmoid(f1) * main_features * self.a[0] + f2 * self.a[1]
f = l2norm(f) # added to the official TIRG code
return f
############################################################################
# *** SCORING METHODS
############################################################################
# 2 versions of scoring methods:
# - a "regular" version, which returns a tensor of shape (batch_size), where
# coefficient (i) is the score between query (i) and target (i).
# - a broadcast version, which returns a tensor of shape (batch_size,
# batch_size), corresponding to the score matrix where coefficient (i,j)
# is the score between query (i) and target (j).
def compute_score_broadcast(self, r, m, t):
return self.query_compositional_embedding(r, m).mm(t.t())
def compute_score(self, r, m, t):
return (self.query_compositional_embedding(r, m) * t).sum(-1)