-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdescriptors_nn.py
166 lines (143 loc) · 5.06 KB
/
descriptors_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# %%
from tqdm import tqdm
from rdkit import Chem, DataStructs
from rdkit.Chem import AllChem
from rdkit.Chem import Descriptors, Crippen, Lipinski, rdChemReactions
import numpy as np
import torch
from torch import nn, Tensor
import matplotlib.pyplot as plt
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
import pandas as pd
import math
# %%
class Net(nn.Module):
# Constructor
def __init__(self, Layers):
super(Net, self).__init__()
self.hidden = nn.ModuleList()
for input_size, output_size in zip(Layers, Layers[1:]):
self.hidden.append(nn.Linear(input_size, output_size))
# Prediction
def forward(self, activation):
L = len(self.hidden)
for (l, linear_transform) in zip(range(L), self.hidden):
if l < L - 1:
activation = F.relu(linear_transform(activation))
else:
activation = linear_transform(activation)
return activation
# %%
class NetRelu(nn.Module):
# Constructor
def __init__(self, D_in, H1, H2, H3, H4, D_out):
super(NetRelu, self).__init__()
self.linear1 = nn.Linear(D_in, H1)
self.linear2 = nn.Linear(H1, H2)
self.linear3 = nn.Linear(H2, H3)
self.linear4 = nn.Linear(H3, H4)
self.linear5 = nn.Linear(H4, D_out)
# Prediction
def forward(self, x):
x = torch.relu(self.linear1(x))
x = torch.relu(self.linear2(x))
x = torch.relu(self.linear3(x))
x = torch.relu(self.linear4(x))
x = self.linear5(x)
return x.double()
# %%
def get_mol_info(smi: str) -> np.array:
mol = Chem.MolFromSmiles(smi)
mw = Descriptors.MolWt(mol)
logp = Crippen.MolLogP(mol)
rotors = Lipinski.NumRotatableBonds(mol)
ap = len(mol.GetAromaticAtoms()) / mol.GetNumAtoms()
return torch.tensor([mw, logp, rotors, ap])
# %%
def train(data_set, model, criterion, train_loader, validation_loader, optimizer, epochs=100):
LOSS = []
ACC = []
for epoch in tqdm(range(epochs)):
epoch_train_loss = 0
for x, y in train_loader:
optimizer.zero_grad()
yhat = model(x)
loss = criterion(yhat, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch_train_loss += loss.item()
#LOSS.append(loss.item())
LOSS.append(epoch_train_loss / len(train_loader))
epoch_val_loss = 0
for x, y in validation_loader:
val_yhat = model(x)
val_loss = criterion(val_yhat, y)
epoch_val_loss += val_loss.item()
#ACC.append(val_loss.item())
ACC.append(epoch_val_loss / len(validation_loader))
fig, ax2 = plt.subplots()
color = 'tab:blue'
ax2.set_ylabel('val loss', color = color)
ax2.set_xlabel('Iteration', color = color)
ax2.plot(ACC, color = color)
ax2.tick_params(axis = 'y', color = color)
ax1 = ax2.twinx()
color = 'tab:red'
ax1.plot(LOSS, color = color)
ax1.set_ylabel('train loss', color = color)
ax1.tick_params(axis = 'y', color = color)
fig.tight_layout() # otherwise the right y-label is slightly clipped
plt.savefig('/Users/nkusanda/Desktop/RESEARCH/morgan_nn/loss.jpg')
plt.show()
return LOSS, ACC
# %%
pwd = "aps360-group-45/"
df = pd.read_csv(pwd + "delaney.csv")
smiles = df['SMILES'].to_numpy()
sol = df['LogS'].to_numpy()
fps_delaney = []
for i in tqdm(range(len(smiles))):
mol = Chem.MolFromSmiles(smiles[i])
mw = Descriptors.MolWt(mol)
logp = Crippen.MolLogP(mol)
rotors = Lipinski.NumRotatableBonds(mol)
ap = len(mol.GetAromaticAtoms()) / mol.GetNumAtoms()
x = torch.tensor([mw, logp, rotors, ap])
y = torch.tensor((sol[i]))
y = y.view(1)
fps_delaney.append((x,y))
pwd = "aps360-group-45/"
df = pd.read_csv(pwd + "dls_100_unique.csv")
smiles_dls = df['SMILES'].to_numpy()
sol_dls = df['LogS'].to_numpy()
fps_dls100 = []
for i in tqdm(range(len(smiles_dls))):
mol = Chem.MolFromSmiles(smiles_dls[i])
mw = Descriptors.MolWt(mol)
logp = Crippen.MolLogP(mol)
rotors = Lipinski.NumRotatableBonds(mol)
ap = len(mol.GetAromaticAtoms()) / mol.GetNumAtoms()
x = torch.tensor([mw, logp, rotors, ap])
y = torch.tensor((sol_dls[i]))
y = y.view(1)
fps_dls100.append((x,y))
# %%
criterion = nn.MSELoss()
train_loader = torch.utils.data.DataLoader(dataset=fps_delaney, batch_size=4, shuffle=True)
validation_loader = torch.utils.data.DataLoader(dataset=fps_dls100, batch_size=4, shuffle=False)
model = NetRelu(4, 20, 20, 20, 20, 1)
learning_rate = 0.00005
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
LOSS, ACC = train(data_set, model, criterion, train_loader, validation_loader, optimizer, epochs=10000)
# %%
predict = []
model.eval()
for i in tqdm(range(len(smiles_dls))):
fp = get_mol_info(smiles_dls[i])
pred = model(fp).detach().numpy()
predict.append((smiles_dls[i], sol_dls[i], pred[0]))
df_bp = pd.DataFrame(predict, columns =['smile', 'logS', 'prediction'])
df_bp.to_csv(pwd + "predict_dls.csv")
# %%