-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset.py
178 lines (144 loc) · 4.63 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
"""Mutation Validation for LVQ datasets"""
from enum import Enum
import random
from dataclasses import dataclass
import numpy as np
import torch
from sklearn.datasets import load_breast_cancer, make_moons, make_blobs
from torchvision import transforms
from torchvision.datasets import MNIST, CIFAR10
class Sampling(str, Enum):
RANDOM = "random"
FULL = "full"
@dataclass(slots=True)
class RandomInputs:
random_inputs: torch.Tensor
random_labels: torch.Tensor
@dataclass(slots=True)
class TensorSet:
input_data: torch.Tensor
labels: torch.Tensor
@dataclass(slots=True)
class DATASET:
input_data: np.ndarray
labels: np.ndarray
def breast_cancer_dataset() -> DATASET:
data, labels = load_breast_cancer(return_X_y=True)
return DATASET(data, labels)
def moons_dataset(random_state: int) -> DATASET:
data, labels = make_moons(
n_samples=150, shuffle=True, noise=None, random_state=random_state
)
return DATASET(data, labels)
def bloobs(random_state: int) -> DATASET:
data, labels = make_blobs(
n_samples=[120, 80],
centers=[[0.0, 0.0], [2.0, 2.0]], # type: ignore
cluster_std=[1.2, 0.5],
random_state=random_state,
shuffle=False,
)
return DATASET(data, labels)
def mnist_dataset() -> TensorSet:
train_dataset = MNIST(
"~/datasets",
train=True,
download=True,
transform=transforms.Compose(
[
transforms.ToTensor(),
]
),
)
test_dataset = MNIST(
"~/datasets",
train=False,
download=True,
transform=transforms.Compose(
[
transforms.ToTensor(),
]
),
)
return TensorSet(
torch.cat([train_dataset.data, test_dataset.data]),
torch.cat([train_dataset.targets, test_dataset.targets]),
)
def cifar_10(sample: Sampling, size: int) -> TensorSet:
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
)
train_dataset = CIFAR10(
root="./data", train=True, download=True, transform=transform
)
test_dataset = CIFAR10(
root="./data", train=False, download=True, transform=transform
)
full_train_ds = torch.cat(
[torch.from_numpy(train_dataset.data), torch.from_numpy(test_dataset.data)]
)
full_train_labels = torch.cat(
[
torch.from_numpy(np.array(train_dataset.targets)),
torch.from_numpy(np.array(test_dataset.targets)),
]
)
classwise_labels = get_classwise_labels(full_train_labels)
samples = get_random_inputs(
full_train_ds, full_train_labels, classwise_labels, sample_size=size
)
match sample:
case Sampling.FULL:
return TensorSet(full_train_ds, full_train_labels)
case Sampling.RANDOM:
return TensorSet(samples.random_inputs, samples.random_labels)
case _:
raise RuntimeError("cifar-10:none of the cases match")
def get_classwise_labels(full_labels: torch.Tensor, num_class: int = 10) -> np.ndarray:
classwise_labels = []
for class_label in range(num_class):
for index, label in enumerate(full_labels):
label = label.detach().cpu().numpy()
if label == class_label:
classwise_labels.append(index)
return np.reshape(classwise_labels, (-1, 6000))
def get_random_inputs(
full_train_ds: torch.Tensor,
full_train_labels: torch.Tensor,
classwise_labels: np.ndarray,
sample_size: int = 1000,
) -> RandomInputs:
random_labels = []
for class_ in classwise_labels:
random.shuffle(class_)
random_labels.append(class_[:sample_size])
random_label_indices = np.array(random_labels)
random_label_indices = random_label_indices.flatten()
return RandomInputs(
torch.from_numpy(
np.array([full_train_ds[index] for index in random_label_indices])
),
torch.from_numpy(
np.array([full_train_labels[index] for index in random_label_indices])
),
)
@dataclass(slots=True)
class DATA:
sample: Sampling = Sampling.FULL
random: int = 4
sample_size: int = 1000
@property
def S_1(self) -> DATASET:
return moons_dataset(self.random)
@property
def S_2(self) -> DATASET:
return bloobs(self.random)
@property
def breast_cancer(self) -> DATASET:
return breast_cancer_dataset()
@property
def mnist(self) -> TensorSet:
return mnist_dataset()
@property
def cifar_10(self) -> TensorSet:
return cifar_10(self.sample, self.sample_size)