-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathTreeNetworks.h
228 lines (184 loc) · 6.01 KB
/
TreeNetworks.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#ifndef __TTNS_TREE_NETWORKS_H
#define __TTNS_TREE_NETWORKS_H
#include "Input.h"
#include "Site.h"
#include "Optimize.h"
#include "Fermion.h"
namespace ttns
{
//
// total system which consists of site objects
//
template<size_t Z>
class TreeNetworks
{
private:
std::vector<int> m_connect; ///< connectivity
std::vector<Site<Z, Fermion>*> m_sites; ///< site objects
double m_energy; ///< energy
bool m_isInit; ///< whether to initialize tree
// copying function
void DeepCopy (const TreeNetworks& other)
{
m_connect = other.m_connect;
m_energy = other.m_energy;
m_isInit = other.m_isInit;
this->Create(m_connect);
for(size_t iSite = 0; iSite < m_sites.size(); ++iSite) *m_sites[iSite] = *other.m_sites[iSite];
}
// destruct
void Clean ()
{
m_energy = 0.0;
m_isInit = false;
for(size_t iSite = 0; iSite < m_sites.size(); ++iSite) delete m_sites[iSite];
m_sites.clear();
}
public:
TreeNetworks ()
: m_energy (0.0), m_isInit (false)
{ }
~TreeNetworks ()
{
this->Clean();
}
TreeNetworks (const std::vector<int>& connect)
{
this->Create(connect);
}
TreeNetworks (const Input& input)
{
this->Compute(input);
}
TreeNetworks (const TreeNetworks& other)
{
this->DeepCopy(other);
}
// energy
double Energy () const { return m_energy; }
// sites
size_t Size () const { return m_sites.size(); }
Site<Z, Fermion>* operator() (const size_t& iSite) const { return m_sites[iSite]; }
Site<Z, Fermion>* operator[] (const size_t& iSite) const { return m_sites[iSite]; }
TreeNetworks& operator= (const TreeNetworks& other)
{
this->DeepCopy(other);
return *this;
}
void Create (const std::vector<int>& connect, const std::vector<size_t>& orbitals)
{
Block::orbitals() = std::accumulate(orbitals.begin(), orbitals.end(), 0);
this->Clean();
m_connect = connect;
size_t nSpinOrb = 0;
TTNS_DEBUG("TreeNetworks::Create : Create Site[0]");
if(orbitals[0] > 0)
m_sites.push_back(new Site<Z, Fermion>(NULL, 0, nSpinOrb++, nSpinOrb++));
else
m_sites.push_back(new Site<Z, Fermion>(NULL, 0));
for(size_t iSite = 1; iSite < connect.size(); ++iSite)
{
TTNS_DEBUG("TreeNetworks::Create : Create Site[" << iSite << "]");
if(orbitals[iSite] > 0)
m_sites.push_back(new Site<Z, Fermion>(m_sites[connect[iSite]], iSite, nSpinOrb++, nSpinOrb++));
else
m_sites.push_back(new Site<Z, Fermion>(m_sites[connect[iSite]], iSite));
}
}
void Initialize (const Fermion& qTotal, const Input& input)
{
// m_sites[0]->CreateRandomTns(qTotal, input[0].M());
std::vector<int> guessConfig(input.GuessConfig());
if(guessConfig.size() > 0)
{
size_t nSites = m_sites.size();
size_t nElectrons = qTotal.p();
int nSpins = qTotal.s();
size_t nDoublyOcc = (nElectrons - nSpins) / 2;
size_t nOcc = nDoublyOcc + nSpins;
std::map< size_t, size_t > orbitalMap(input.OrbitalMap());
std::vector< size_t > offSet;
{
size_t nDummy = 0;
std::vector< size_t > orbitals(input.Orbitals());
for(size_t i = 0; i < nSites; ++i)
{
if(orbitals[i] > 0)
offSet.push_back(nDummy);
else
nDummy++;
}
}
btas::Qshapes<Fermion> hfConfig(nSites, Fermion::zero());
if(guessConfig.size() == nSites)
{
for(size_t i = 0; i < guessConfig.size(); ++i)
{
size_t iSite = orbitalMap.find(i)->second;
switch(guessConfig[i])
{
case 1:
hfConfig[iSite+offSet[iSite]] = Fermion(1, 1);
break;
case -1:
hfConfig[iSite+offSet[iSite]] = Fermion(1,-1);
break;
case 2:
hfConfig[iSite+offSet[iSite]] = Fermion(2, 0);
break;
}
}
}
else
{
for(size_t i = 0; i < nDoublyOcc; ++i)
{
size_t iSite = orbitalMap.find(i)->second;
hfConfig[iSite+offSet[iSite]] = Fermion(2, 0);
}
for(size_t i = nDoublyOcc; i < nOcc; ++i)
{
size_t iSite = orbitalMap.find(i)->second;
hfConfig[iSite+offSet[iSite]] = Fermion(1, 1);
}
}
std::map< Site<Z, Fermion>*, Fermion > occ;
for(size_t i = 0; i < hfConfig.size(); ++i)
occ.insert(std::make_pair(m_sites[i], hfConfig[i]));
m_sites[0]->CreateHFConf(occ);
}
else
{
m_sites[0]->CreateRandomTns(qTotal, 1);
}
m_sites[0]->Initialize(0, input.prefix());
m_isInit = true;
}
TreeNetworks& Optimize(const Input& input)
{
if(!m_isInit)
{
this->Create(input.Connection(), input.Orbitals());
this->Initialize(input.QTotal(), input);
}
for(size_t iTask = 0; iTask < input.Schedules(); ++iTask)
{
std::cout << "\t\t************************* Task [ " << std::setw(3) << iTask << " ] *************************" << std::endl;
std::cout << input[iTask] << std::endl;
m_energy = ttns::Optimize(m_sites[0], input[iTask], input.prefix());
// printing results here
}
return *this;
}
TreeNetworks& Compute(const Input& input)
{
TTNS_DEBUG("TreeNetworks::Compute : Calling TreeNetworks::Create(...)");
this->Create(input.Connection(), input.Orbitals());
TTNS_DEBUG("TreeNetworks::Compute : Calling TreeNetworks::Initialize(...)");
this->Initialize(input.QTotal(), input);
TTNS_DEBUG("TreeNetworks::Compute : Calling TreeNetworks::Optimize(...)");
return this->Optimize(input);
}
};
} // namespace ttns
#endif // __TTNS_TREE_NETWORKS_H