-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmetrics.py
45 lines (39 loc) · 1.61 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Authors : Nairouz Mrabah (mrabah.nairouz@courrier.uqam.ca) & Mohamed Fawzi Touati (touati.mohamed_fawzi@courrier.uqam.ca)
# @Paper : Rethinking Graph Autoencoder Models for Attributed Graph Clustering
# @License : MIT License
import numpy as np
import torch
from sklearn.metrics import normalized_mutual_info_score, adjusted_rand_score, f1_score
nmi = normalized_mutual_info_score
ari = adjusted_rand_score
f1 = f1_score
def cos_grad(grad1, grad2):
grad1_list = []
grad2_list = []
for i in range(len(grad1)):
grad1_list.append(grad1[i].flatten())
grad2_list.append(grad2[i].flatten())
grad1_vector = torch.cat(grad1_list, 0)
grad2_vector = torch.cat(grad2_list, 0)
return torch.dot(grad1_vector, grad2_vector) / ((torch.norm(grad1_vector)) * (torch.norm(grad2_vector)))
def acc(y_true, y_pred):
"""
Calculate clustering accuracy. Require scikit-learn installed
# Arguments
y: true labels, numpy.array with shape `(n_samples,)`
y_pred: predicted labels, numpy.array with shape `(n_samples,)`
# Return
accuracy, in [0,1]
"""
y_true = y_true.astype(np.int64)
assert y_pred.size == y_true.size
D = max(y_pred.max(), y_true.max()) + 1
w = np.zeros((D, D), dtype=np.int64)
for i in range(y_pred.size):
w[y_pred[i], y_true[i]] += 1
#from sklearn.utils.linear_assignment_ import linear_assignment
from scipy.optimize import linear_sum_assignment
row_ind, col_ind = linear_sum_assignment(w.max() - w)
return sum([w[i, j] for i, j in zip(row_ind, col_ind)]) * 1.0 / y_pred.size