-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
79 lines (58 loc) · 2.45 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# -*- coding: utf-8 -*-
import argparse
import os
import sys
import torch
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.functional as F
from envs import create_atari_env
from a3c import ActorCritic, SharedAdam
from actor import actor
from monitor import monitor
parser = argparse.ArgumentParser(description='A3C')
# 參數部分
parser.add_argument('--lr', type=float, default=0.0001, metavar='LR',
help='learning rate (default: 0.0001)')
parser.add_argument('--gamma', type=float, default=0.99, metavar='G',
help='discount factor for rewards (default: 0.99)')
parser.add_argument('--tau', type=float, default=1.00, metavar='T',
help='parameter for GAE (default: 1.00)')
# 演算法部分
parser.add_argument('--num-processes', type=int, default=4, metavar='NP',
help='how many training processes to use (default: 4)')
parser.add_argument('--num-steps', type=int, default=20, metavar='NS',
help='number of forward steps in A3C (default: 20)')
parser.add_argument('--max-episode-length', type=int, default=100000, metavar='M',
help='maximun length of an episode (default: 100000)')
parser.add_argument('--env-name', default='Pong-v0', metavar='ENV',
help='environment to train on (default: Pong-v0)')
if __name__ == '__main__':
# 控制 Thread 的數量
os.environ['OMP_NUM_THREADS'] = '1'
# 獲取參數
args = parser.parse_args()
# 創建環境
env = create_atari_env(args.env_name)
# Critic
shared_model = ActorCritic(env.observation_space.shape[0], env.action_space)
# 開啟share_memory mode
shared_model.share_memory()
# optimizer, adam with shared statistics
optimizer = SharedAdam(shared_model.parameters(), lr=args.lr)
optimizer.share_memory()
# multiprocesses, Hogwild! style update
# 參考 https://github.com/pytorch/examples/tree/master/mnist_hogwild
processes = []
# monitor, 用來觀察目前model的訓練情況
p = mp.Process(target=monitor, args=(args.num_processes, args, shared_model))
p.start()
processes.append(p)
# actor, 平行創造各個環境,各別訓練agents
for rank in range(0, args.num_processes):
p = mp.Process(target=actor, args=(rank, args, shared_model, optimizer))
p.start()
processes.append(p)
# join, 確保update不衝突
for p in processes:
p.join()