-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathxgb_in_loop.py
161 lines (139 loc) · 6.08 KB
/
xgb_in_loop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# coding=utf-8
from sklearn.ensemble import AdaBoostClassifier
from sklearn.pipeline import Pipeline
import numpy as np
from matplotlib.colors import ListedColormap
import math
import pandas as pd
import matplotlib.pyplot as plt
import scipy
from sklearn.preprocessing import Imputer
from sklearn.preprocessing import LabelEncoder, StandardScaler, Normalizer
from sklearn.preprocessing import LabelBinarizer
from sklearn.model_selection import train_test_split, cross_val_score, KFold, cross_val_predict
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
from sklearn.svm import SVC, LinearSVC, NuSVC
from sklearn.tree import DecisionTreeClassifier
from xgboost import XGBClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
import pickle
import time
import inspect
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.neural_network import MLPClassifier
from sklearn.neural_network import BernoulliRBM
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.ensemble import GradientBoostingClassifier
def retrieve_name(var):
callers_local_vars = inspect.currentframe().f_back.f_locals.items()
return [var_name for var_name, var_val in callers_local_vars if var_val is var]
data = pd.read_csv('combined_trainingsdata_butter_5hz_lowpass.csv')
# ================================================transforming========================================================
#all vehicles
X = data.iloc[:,:-1].values
Y = data.iloc[:,-1]
# 0: Bicycle
# 1: Bus
# 2: Car
# 3: Train
# 4: Tram
# 5: Walking
#bus only
Y_bus = (Y=='bus').values.astype(int)
# 1: bus
# 0: no bus
imputer = Imputer(missing_values='NaN', strategy = 'mean', axis=0)
imputer = imputer.fit(X)
X = imputer.transform(X)
labelencoder_Y =LabelEncoder()
Y = labelencoder_Y.fit_transform(Y)
labelencoder_Y_bus = LabelEncoder()
Y_bus = labelencoder_Y_bus.fit_transform(Y_bus)
# ================================================Splitting Training/Test Data==========================================
#training and testing splitting multi class
sc_X = StandardScaler()
X = sc_X.fit_transform(X)
# X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size=0.25, random_state=0)
# X_train = sc_X.fit_transform(X_train)
# X_test = sc_X.transform(X_test)
#training and testing splitting single class
# X_bus_train, X_bus_test, Y_bus_train, Y_bus_test = train_test_split(X,Y_bus, test_size=0.25, random_state=0)
# X_bus_train = sc_X.fit_transform(X_bus_train)
# ================================================Model Selection=======================================================
#classifier
svm_clf= SVC(kernel = 'rbf', random_state=0)
svm_clf_bus = SVC(kernel = 'rbf', random_state=0)
xgb_clf = XGBClassifier()
xgb_clf_bus = XGBClassifier()
dt_clf = DecisionTreeClassifier()
dt_clf_bus = DecisionTreeClassifier()
adb_clf = AdaBoostClassifier()
adb_clf_bus = AdaBoostClassifier()
gNB_clf = GaussianNB()
gNB_clf_bus = GaussianNB()
rf_clf = RandomForestClassifier()
rf_clf_bus = RandomForestClassifier()
knn_clf = KNeighborsClassifier()
knn_clf_bus = KNeighborsClassifier()
logReg_clf = LogisticRegression(random_state=0)
logReg_clf_bus = LogisticRegression(random_state=0)
mpl_clf = MLPClassifier()
mpl_clf_bus = MLPClassifier()
qda_clf = QuadraticDiscriminantAnalysis()
qda_clf_bus = QuadraticDiscriminantAnalysis()
lda_clf = LinearDiscriminantAnalysis()
lda_clf_bus = LinearDiscriminantAnalysis()
gb_clf = GradientBoostingClassifier()
gb_clf_bus = GradientBoostingClassifier()
lsvm_clf = LinearSVC()
lsvm_clf_bus = LinearSVC()
clfs = [xgb_clf,xgb_clf_bus
]
# ================================================Cross-Validation======================================================
if __name__ == '__main__':
y_hats = []
y_bus_hats = []
accs = []
accs_bus = []
reports = []
reports_bus = []
conf_mats = []
conf_mats_bus = []
for i,clf in enumerate(clfs[::2]):
clf_bus = clfs[1::2][i]
print("currently on {} and {}".format(retrieve_name(clf)[0],retrieve_name(clf_bus)[0]))
y_hats.append(cross_val_predict(clf, X,Y,cv=10, n_jobs=-1))
conf_mats.append(pd.DataFrame(
data= confusion_matrix(Y, y_hats[i]),
index = ['bicycle','bus','car','train','tram','walking'],
columns= ['bicycle','bus','car','train','tram','walking']
))
accs.append(np.average(accuracy_score(Y,y_hats[i])))
reports.append(classification_report(Y, y_hats[i]))
print("__________________________"
"______________________{}__________________________"
"________________________________________".format(retrieve_name(clf)[0]))
print('multi class 💃')
print(reports[i])
print(conf_mats[i])
print(accs[i])
print("__________________________________________________________________________________________________________________")
y_bus_hats.append(cross_val_predict(clf_bus, X, Y_bus, cv=10, n_jobs=-1))
conf_mats_bus.append(pd.DataFrame(
data=confusion_matrix(Y_bus, y_bus_hats[i]),
index=['other vehicle','bus'],
columns=['other vehicle','bus']
))
accs_bus.append(accuracy_score(Y_bus,y_bus_hats[i]))
reports_bus.append(classification_report(Y_bus, y_bus_hats[i]))
print("_________________________________________{}"
"_________________________________________________________________________".format(retrieve_name(clf_bus)[0]))
print('single class 🎉')
print(reports_bus[i])
print(conf_mats_bus[i])
print(accs_bus[i])
print("__________________________________________________________________________________________________________________")