-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy pathisic_train.py
146 lines (117 loc) · 4.82 KB
/
isic_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# -*- coding: utf-8 -*-
"""
Created on Sun Oct 14 17:16:54 2018
@author: Nabila Abraham
"""
import os
import cv2
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from keras.models import Model
from keras.layers import Input, concatenate, Conv2D, MaxPooling2D, Conv2DTranspose
from keras.layers import Activation, add, multiply, Lambda
from keras.layers import AveragePooling2D, average, UpSampling2D, Dropout
from keras.optimizers import Adam, SGD, RMSprop
from keras.initializers import glorot_normal, random_normal, random_uniform
from keras.callbacks import ModelCheckpoint, TensorBoard, EarlyStopping
from keras import backend as K
from keras.layers.normalization import BatchNormalization
from sklearn.metrics import roc_curve, auc, precision_recall_curve # roc curve tools
from sklearn.model_selection import train_test_split
import losses
import utils
import newmodels
img_row = 192
img_col = 256
img_chan = 3
epochnum = 50
batchnum = 16
smooth = 1.
input_size = (img_row, img_col, img_chan)
sgd = SGD(lr=0.01, momentum=0.90, decay=1e-6)
adam = Adam(lr=1e-3)
curr_dir = os.getcwd()
train_dir = os.path.join(curr_dir, 'resized_train')
gt_dir = os.path.join(curr_dir, 'resized_gt')
orig_dir = os.path.join(curr_dir, 'orig_gt')
img_list = os.listdir(train_dir)
num_imgs = len(img_list)
orig_data = np.zeros((num_imgs, img_row, img_col, img_chan))
orig_masks = np.zeros((num_imgs, img_row, img_col,1))
for idx,img_name in enumerate(img_list):
orig_data[idx] = plt.imread(os.path.join(train_dir, img_name))
orig_masks[idx,:,:,0] = plt.imread(os.path.join(gt_dir, img_name.split('.')[0] + "_segmentation.png"))
indices = np.arange(0,num_imgs,1)
imgs_train, imgs_test, \
imgs_mask_train, orig_imgs_mask_test,\
trainIdx, testIdx = train_test_split(orig_data,orig_masks, indices,test_size=0.25)
imgs_train /= 255
imgs_test /=255
estop = EarlyStopping(monitor='val_loss', min_delta=0.001, patience=5, mode='auto')
filepath="weights.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='val_final_dsc',
verbose=1, save_best_only=True,
save_weights_only=True, mode='max')
gt1 = imgs_mask_train[:,::8,::8,:]
gt2 = imgs_mask_train[:,::4,::4,:]
gt3 = imgs_mask_train[:,::2,::2,:]
gt4 = imgs_mask_train
gt_train = [gt1,gt2,gt3,gt4]
model = newmodels.attn_reg(sgd, input_size, losses.focal_tversky)
hist = model.fit(imgs_train, gt_train, validation_split=0.15,
shuffle=True, epochs=epochnum, batch_size=batchnum,
verbose=True, callbacks=[checkpoint])#, callbacks=[estop,tb])
h = hist.history
utils.plot(h, epochnum, batchnum, img_col, 1)
num_test = len(imgs_test)
_,_,_,preds = model.predict(imgs_test)
#preds = model.predict(imgs_test) #use this if the model is unet
preds_up=[]
dsc = np.zeros((num_test,1))
recall = np.zeros_like(dsc)
tn = np.zeros_like(dsc)
prec = np.zeros_like(dsc)
thresh = 0.5
# check the predictions from the trained model
for i in range(num_test):
#gt = orig_masks[testIdx[i]]
name = img_list[testIdx[i]]
gt = plt.imread(os.path.join(orig_dir, name.split('.')[0] + "_segmentation.png"))
pred_up = cv2.resize(preds[i], (gt.shape[1], gt.shape[0]), interpolation=cv2.INTER_NEAREST)
dsc[i] = utils.check_preds(pred_up > thresh, gt)
recall[i], _, prec[i] = utils.auc(gt, pred_up >thresh)
print('-'*30)
print('At threshold =', thresh)
print('\n DSC \t\t{0:^.3f} \n Recall \t{1:^.3f} \n Precision\t{2:^.3f}'.format(
np.sum(dsc)/num_test,
np.sum(recall)/num_test,
np.sum(prec)/num_test ))
# check the predictions with the best saved model from checkpoint
model.load_weights("weights.hdf5")
_,_,_,preds = model.predict(imgs_test)
#preds = model.predict(imgs_test) #use this if the model is unet
preds_up=[]
dsc = np.zeros((num_test,1))
recall = np.zeros_like(dsc)
tn = np.zeros_like(dsc)
prec = np.zeros_like(dsc)
for i in range(num_test):
#gt = orig_masks[testIdx[i]]
name = img_list[testIdx[i]]
gt = plt.imread(os.path.join(orig_dir, name.split('.')[0] + "_segmentation.png"))
pred_up = cv2.resize(preds[i], (gt.shape[1], gt.shape[0]), interpolation=cv2.INTER_NEAREST)
dsc[i] = utils.check_preds(pred_up > thresh, gt)
recall[i], _, prec[i] = utils.auc(gt, pred_up >thresh)
print('-'*30)
print('USING HDF5 saved model at thresh=', thresh)
print('\n DSC \t\t{0:^.3f} \n Recall \t{1:^.3f} \n Precision\t{2:^.3f}'.format(
np.sum(dsc)/num_test,
np.sum(recall)/num_test,
np.sum(prec)/num_test ))
#plot precision-recall
y_true = orig_imgs_mask_test.ravel()
y_preds = preds.ravel()
precision, recall, thresholds = precision_recall_curve(y_true, y_preds)
plt.figure(20)
plt.plot(recall,precision)