-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexperiments.py
621 lines (511 loc) · 20.2 KB
/
experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
import environments.ControlledRangeVariance
from opebet import wealth_lb_1d, wealth_lb_2d, wealth_2d, wealth_lb_2d_individual_qps
import pickle
import numpy as np
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
def getenv(wsq, tv=None):
wsupport = [0, 0.5, 2, 100]
env = environments.ControlledRangeVariance.ControlledRangeVariance(seed=90210, wsupport=wsupport, expwsq=wsq, tv=tv)
return env, env.getpw(), env.range(), env.expectedwsq()
def compress(data):
# could be improved but it's used only for debugging.
sd = sorted(tuple(datum) for datum in data)
from itertools import groupby
return [(len(list(g)),) + tuple(map(float, k)) for k, g in groupby(sd)]
def produce_results(env, method, alpha, ndata=100, reps=10):
wmin, wmax = env.range()
ubd = np.zeros(ndata)
lbd = np.zeros(ndata)
cov = np.zeros((reps, ndata))
width = np.zeros((reps, ndata))
bounds = []
for i in range(reps):
(truevalue, data) = env.sample(ndata)
try:
cs = method(data=data, wmin=wmin, wmax=wmax, alpha=alpha)
assert np.isfinite(cs[0]).all() and np.isfinite(cs[1]).all()
assert np.all(cs[1] >= cs[0] - 1e-4)
assert cs[1][-1] <= 1 + 1e-4
assert cs[0][-1] >= -1e-4
except:
import json
with open('bad_case.json', 'w') as out:
perm_state = list(env.perm_state)
perm_state[1] = list(map(int, perm_state[1]))
out.write(json.dumps((float(truevalue), compress(data), perm_state, float(wmin), float(wmax), alpha)))
print('truevalue was {}'.format(truevalue))
print('data was {}'.format(compress(data)))
print('wmin, wmax was {} {}'.format(wmin, wmax))
print('ci was {} {}'.format(cs[0][-1], cs[1][-1]))
raise
np.greater_equal(cs[1], truevalue, out=ubd)
np.less_equal(cs[0], truevalue, out=lbd)
cov[i, :] = ubd * lbd
width[i, :] += np.subtract(cs[1], cs[0])
bounds.append((truevalue, cs[0], cs[1]))
upper_ends = [d[2][-1] for d in bounds]
lower_ends = [d[1][-1] for d in bounds]
upperbounded = [1 if d[0] <= d[2][-1] else 0 for d in bounds]
lowerbounded = [1 if d[1][-1] <= d[0] else 0 for d in bounds]
covered = [1 if u * l > 0 else 0 for (u, l) in zip(upperbounded, lowerbounded)]
final_width = [d[2][-1] - d[1][-1] for d in bounds]
def std_mean(x):
return np.std(x, ddof=1) / np.sqrt(len(x) - 1)
dbg = {
'cov': np.mean(covered),
'covstd': std_mean(covered),
'ubcov': np.mean(upperbounded),
'lbcov': np.mean(lowerbounded),
'final_width': np.mean(final_width),
'widthstd': std_mean(final_width),
'widthlo': np.quantile(final_width, q=[0.05])[0],
'widthhi': np.quantile(final_width, q=[0.95])[0],
'ub': np.mean(upper_ends),
'lb': np.mean(lower_ends),
}
verbose = True
if verbose:
print('{}'.format((ndata, {k: np.round(v, 4) for k, v in dbg.items()})), flush=True)
return (ndata,
{
'cov': np.mean(cov, axis=0),
'covstd': np.std(cov, axis=0, ddof=1) / np.sqrt(cov.shape[0] - 1),
'width': np.mean(width, axis=0),
'widtstd': np.std(width, axis=0, ddof=1) / np.sqrt(width.shape[0] - 1),
},
)
def produce_results_ci(env, method, alpha, ndata=100, reps=10):
wmin, wmax = env.range()
ubd = np.zeros(1)
lbd = np.zeros(1)
cov = np.zeros(reps)
width = np.zeros(reps)
bounds = []
for i in range(reps):
(truevalue, data) = env.sample(ndata)
try:
cs = method(data=data, wmin=wmin, wmax=wmax, alpha=alpha)
assert np.isfinite(cs[0]) and np.isfinite(cs[1])
assert cs[1] >= cs[0] - 1e-4
assert cs[1] <= 1 + 1e-4
assert cs[0] >= -1e-4
except:
import json
with open('bad_case.json', 'w') as out:
perm_state = list(env.perm_state)
perm_state[1] = list(map(int, perm_state[1]))
out.write(json.dumps((float(truevalue), compress(data), perm_state, float(wmin), float(wmax), alpha)))
print('truevalue was {}'.format(truevalue))
print('data was {}'.format(compress(data)))
print('wmin, wmax was {} {}'.format(wmin, wmax))
print('ci was {} {}'.format(cs[0], cs[1]))
raise
np.greater_equal(cs[1], truevalue, out=ubd)
np.less_equal(cs[0], truevalue, out=lbd)
cov[i] = ubd * lbd
width[i] += np.subtract(cs[1], cs[0])
bounds.append((truevalue, cs[0], cs[1]))
upper_ends = [d[2] for d in bounds]
lower_ends = [d[1] for d in bounds]
upperbounded = [1 if d[0] <= d[2] else 0 for d in bounds]
lowerbounded = [1 if d[1] <= d[0] else 0 for d in bounds]
covered = [1 if u * l > 0 else 0 for (u, l) in zip(upperbounded, lowerbounded)]
final_width = [d[2] - d[1] for d in bounds]
def std_mean(x):
return np.std(x, ddof=1) / np.sqrt(len(x) - 1)
dbg = {
'cov': np.mean(covered),
'covstd': std_mean(covered),
'ubcov': np.mean(upperbounded),
'lbcov': np.mean(lowerbounded),
'final_width': np.mean(final_width),
'widthstd': std_mean(final_width),
'widthlo': np.quantile(final_width, q=[0.05])[0],
'widthhi': np.quantile(final_width, q=[0.95])[0],
'ub': np.mean(upper_ends),
'lb': np.mean(lower_ends),
}
verbose = True
if verbose:
print('{}'.format((ndata, {k: np.round(v, 4) for k, v in dbg.items()})), flush=True)
return (ndata,
{
'cov': np.mean(cov, axis=0),
'covstd': np.std(cov, axis=0, ddof=1) / np.sqrt(cov.shape[0] - 1),
'width': np.mean(width, axis=0),
'widtstd': np.std(width, axis=0, ddof=1) / np.sqrt(width.shape[0] - 1),
},
)
def bet_1d(data, wmin, wmax, alpha):
lb, ub = wealth_lb_1d(data, wmin, wmax, alpha)
return np.array(lb), np.array(ub)
def bet_2d(data, wmin, wmax, alpha):
lb, ub = wealth_lb_2d(data, wmin, wmax, alpha)
return np.array(lb), np.array(ub)
def bet_log(data, wmin, wmax, alpha):
lb, ub = wealth_2d(data, wmin, wmax, alpha)
return np.array(lb), np.array(ub)
def bet_iqp(data, wmin, wmax, alpha):
lb, ub = wealth_lb_2d_individual_qps(data, wmin, wmax, alpha)
return np.array(lb), np.array(ub)
# Copied from
# https://github.com/pmineiro/elfcb
# Why not import it? I modified some code in asymptoticconfidenceinterval below
# TODO: send a PR.
def estimate(datagen, wmin, wmax, rmin=0, rmax=1, raiseonerr=False, censored=False):
import numpy as np
from scipy.optimize import brentq
assert wmin >= 0
assert wmin < 1
assert wmax > 1
assert rmax >= rmin
num = sum(c for c, w, r in datagen())
assert num >= 1
# solve dual
def sumofw(beta):
return sum((c * w)/((w - 1) * beta + num)
for c, w, _ in datagen()
if c > 0)
# fun fact about the MLE:
#
# if \frac{1}{n} \sum_n w_n < 1 then \beta^* wants to be negative
# but as wmax \to \infty, lower bound on \beta^* is 0
# therefore the estimate becomes
#
# \hat{V}(\pi) = \left( \frac{1}{n} \sum_n w_n r_n \right) +
# \left( 1 - \frac{1}{n} \sum_n w_n \right) \rho
#
# where \rho is anything between rmin and rmax
def graddualobjective(beta):
return sum(c * (w - 1)/((w - 1) * beta + num)
for c, w, _ in datagen()
if c > 0)
betamax = min( ((num - c) / (1 - w)
for c, w, _ in datagen()
if w < 1 and c > 0 ),
default=num / (1 - wmin))
betamax = min(betamax, num / (1 - wmin))
betamin = max( ((num - c) / (1 - w)
for c, w, _ in datagen()
if w > 1 and c > 0 ),
default=num / (1 - wmax))
betamin = max(betamin, num / (1 - wmax))
gradmin = graddualobjective(betamin)
gradmax = graddualobjective(betamax)
if gradmin * gradmax < 0:
betastar = brentq(f=graddualobjective, a=betamin, b=betamax)
elif gradmin < 0:
betastar = betamin
else:
betastar = betamax
remw = max(0.0, 1.0 - sumofw(betastar))
if censored:
vnumhat = 0
vdenomhat = 0
for c, w, r in datagen():
if c > 0:
if r is not None:
vnumhat += w*r* c/((w - 1) * betastar + num)
vdenomhat += w*1* c/((w - 1) * betastar + num)
if np.allclose(vdenomhat, 0):
vhat = vmin = vmax = None
else:
vnummin = vnumhat + remw * rmin
vdenommin = vdenomhat + remw
vmin = min([ vnummin / vdenommin, vnumhat / vdenomhat ])
vnummax = vnumhat + remw * rmax
vdenommax = vdenomhat + remw
vmax = max([ vnummax / vdenommax, vnumhat / vdenomhat ])
vhat = 0.5*(vmin + vmax)
else:
vhat = 0
for c, w, r in datagen():
if c > 0:
vhat += w*r* c/((w - 1) * betastar + num)
vmin = vhat + remw * rmin
vmax = vhat + remw * rmax
vhat += remw * (rmin + rmax) / 2.0
return vhat, {
'betastar': betastar,
'vmin': vmin,
'vmax': vmax,
'num': num,
'qfunc': lambda c, w, r: c / (num + betastar * (w - 1)),
}
# Copied from
# https://github.com/pmineiro/elfcb/blob/d0daf9e634b2382001f9b336a715e35fa2fd8619/MLE/MLE/asymptoticconfidenceinterval.py
# NB: that was the git HEAD when I copied it
# NB: a small modification was done to avoid numerical issues with scipy.stats.f.isf when dfd > 23000
def asymptoticconfidenceinterval(datagen, wmin, wmax, alpha=0.05,
rmin=0, rmax=1, raiseonerr=False):
from scipy.special import xlogy
from scipy.stats import f, chi2
from math import exp, log
import numpy as np
assert wmin >= 0
assert wmin < 1
assert wmax > 1
assert rmax >= rmin
vhat, qmle = estimate(datagen=datagen, wmin=wmin, wmax=wmax,
rmin=rmin, rmax=rmax, raiseonerr=raiseonerr)
num = qmle['num']
if num < 2:
return ((rmin, rmax), (None, None))
betamle = qmle['betastar']
if num > 23000:
Delta = 0.5 * chi2(df=1).isf(q=alpha)
else:
#There are numerical issues with isf for num > 23000
Delta = 0.5 * f.isf(q=alpha, dfn=1, dfd=num-1)
sumwsq = sum(c * w * w for c, w, _ in datagen())
wscale = max(1.0, np.sqrt(sumwsq / num))
rscale = max(1.0, np.abs(rmin), np.abs(rmax))
# solve dual
tiny = 1e-5
logtiny = log(tiny)
def safedenom(x):
return x if x > tiny else exp(logstar(x))
def logstar(x):
return log(x) if x > tiny else -1.5 + logtiny + 2.0*(x/tiny) - 0.5*(x/tiny)*(x/tiny)
def jaclogstar(x):
return 1/x if x > tiny else (2.0 - (x/tiny))/tiny
def hesslogstar(x):
return -1/(x*x) if x > tiny else -1/(tiny*tiny)
def dualobjective(p, sign):
gamma, beta = p
logcost = -Delta
n = 0
for c, w, r in datagen():
if c > 0:
n += c
denom = gamma + (beta + sign * wscale * r) * (w / wscale)
mledenom = num + betamle * (w - 1)
logcost += c * (logstar(denom) - logstar(mledenom))
assert n == num
if n > 0:
logcost /= n
return (-n * exp(logcost) + gamma + beta / wscale) / rscale
def jacdualobjective(p, sign):
gamma, beta = p
logcost = -Delta
jac = np.zeros_like(p)
n = 0
for c, w, r in datagen():
if c > 0:
n += c
denom = gamma + (beta + sign * wscale * r) * (w / wscale)
mledenom = num + betamle * (w - 1)
logcost += c * (logstar(denom) - logstar(mledenom))
jaclogcost = c * jaclogstar(denom)
jac[0] += jaclogcost
jac[1] += jaclogcost * (w / wscale)
assert n == num
if n > 0:
logcost /= n
jac /= n
jac *= -(n / rscale) * exp(logcost)
jac[0] += 1 / rscale
jac[1] += 1 / (wscale * rscale)
return jac
def hessdualobjective(p, sign):
gamma, beta = p
logcost = -Delta
jac = np.zeros_like(p)
hess = np.zeros((2,2))
n = 0
for c, w, r in datagen():
if c > 0:
n += c
denom = gamma + (beta + sign * wscale * r) * (w / wscale)
mledenom = num + betamle * (w - 1)
logcost += c * (logstar(denom) - logstar(mledenom))
jaclogcost = c * jaclogstar(denom)
jac[0] += jaclogcost
jac[1] += jaclogcost * (w / wscale)
hesslogcost = c * hesslogstar(denom)
hess[0][0] += hesslogcost
hess[0][1] += hesslogcost * (w / wscale)
hess[1][1] += hesslogcost * (w / wscale) * (w / wscale)
assert n == num
if n > 0:
logcost /= n
jac /= n
hess /= n
hess[1][0] = hess[0][1]
hess += np.outer(jac, jac)
hess *= -(n / rscale) * exp(logcost)
return hess
consE = np.array([
[ 1, w / wscale ]
for w in (wmin, wmax)
for r in (rmin, rmax)
], dtype='float64')
retvals = []
easybounds = [ (qmle['vmin'] <= rmin + tiny, rmin),
(qmle['vmax'] >= rmax - tiny, rmax) ]
for what in range(2):
if easybounds[what][0]:
retvals.append((easybounds[what][1], None))
continue
sign = 1 - 2 * what
d = np.array([ -sign*w*r + tiny
for w in (wmin, wmax)
for r in (rmin, rmax)
],
dtype='float64')
minsr = min(sign*rmin, sign*rmax)
gamma0, beta0 = ( num - qmle['betastar'] + 2 * tiny,
wscale * (qmle['betastar'] - (1 + 1 / wscale) * minsr)
)
x0 = np.array([ gamma0, beta0 ])
if raiseonerr:
active = np.nonzero(consE.dot(x0) - d < 0)[0]
from pprint import pformat
assert active.size == 0, pformat({
'cons': consE.dot(x0) - d,
'd': d,
'consE.dot(x0)': consE.dot(x0),
'active': active,
'x0': x0
})
# from .gradcheck import gradcheck, hesscheck
# gradcheck(f=lambda p: dualobjective(p, sign),
# jac=lambda p: jacdualobjective(p, sign),
# x=x0,
# what='dualobjective')
#
# hesscheck(jac=lambda p: jacdualobjective(p, sign),
# hess=lambda p: hessdualobjective(p, sign),
# x=x0,
# what='jacdualobjective')
# NB: things i've tried
#
# scipy.minimize method='slsqp': 3.78 it/s, sometimes fails
# sqp with quadprog: 1.75 it/s, sometimes fails
# sqp with cvxopt.qp: 1.05 s/it, reliable
# cvxopt.cp: 1.37 s/it, reliable <= seems most trustworthy
# minimize_ipopt: 4.85 s/it, reliable
## from ipopt import minimize_ipopt
## optresult = minimize_ipopt(
## options={
## 'tol': 1e-12,
# from scipy.optimize import minimize
# optresult = minimize(method='slsqp',
# options={
# 'ftol': 1e-12,
# 'maxiter': 1000,
# },
# fun=dualobjective,
# x0=x0,
# args=(sign,),
# jac=jacdualobjective,
# #hess=hessdualobjective,
# constraints=[{
# 'type': 'ineq',
# 'fun': lambda x: consE.dot(x) - d,
# 'jac': lambda x: consE
# }],
# )
# if raiseonerr:
# from pprint import pformat
# assert optresult.success, pformat(optresult)
#
# fstar, xstar = optresult.fun, optresult.x
# from .sqp import sqp
# fstar, xstar = sqp(
# f=lambda p: dualobjective(p, sign),
# gradf=lambda p: jacdualobjective(p, sign),
# hessf=lambda p: hessdualobjective(p, sign),
# E=consE,
# d=d,
# x0=x0,
# strict=True,
# condfac=1e-9,
# )
from cvxopt import solvers, matrix
def F(x=None, z=None):
if x is None: return 0, matrix(x0)
p = np.reshape(np.array(x), -1)
f = dualobjective(p, sign)
jf = jacdualobjective(p, sign)
Df = matrix(jf).T
if z is None: return f, Df
hf = z[0] * hessdualobjective(p, sign)
H = matrix(hf, hf.shape)
return f, Df, H
soln = solvers.cp(F,
G=-matrix(consE, consE.shape),
h=-matrix(d),
options={'show_progress': False})
if raiseonerr:
from pprint import pformat
assert soln['status'] == 'optimal', pformat(soln)
xstar = soln['x']
fstar = soln['primal objective']
gammastar = xstar[0]
betastar = xstar[1] / wscale
kappastar = (-rscale * fstar + gammastar + betastar) / num
qfunc = lambda c, w, r, kappa=kappastar, gamma=gammastar, beta=betastar, s=sign: kappa * c / (gamma + (beta + s * r) * w)
vbound = -sign * rscale * fstar
retvals.append(
(vbound,
{
'gammastar': gammastar,
'betastar': betastar,
'kappastar': kappastar,
'qfunc': qfunc,
})
)
return (retvals[0][0], retvals[1][0]), (retvals[0][1], retvals[1][1])
def pointwise_asym_ci(data, wmin, wmax, alpha):
n = len(data)
grid = np.round(np.geomspace(1, n)).astype(np.int32)
lbs = []
ubs = []
for t in grid:
cd = compress(data[:t])
(lb, ub), (_, _) = asymptoticconfidenceinterval(lambda: cd, wmin=wmin, wmax=wmax, alpha=alpha, rmin=0, rmax=1)
lbs.append(lb)
ubs.append(ub)
t = 1+np.arange(n)
lb = np.interp(t, grid, np.array(lbs))
ub = np.interp(t, grid, np.array(ubs))
return lb, ub
def evaluate(name, method, alpha, ndata, reps, wsq, tv=None):
env, _, _, _ = getenv(wsq, tv)
z = produce_results(env, method, alpha, ndata, reps)
with open(name, 'wb') as pkl:
pickle.dump(z, pkl)
return z
def evaluate_ci(name, method, alpha, ndata, reps, wsq, tv=None):
env, _, _, _ = getenv(wsq, tv)
z = produce_results_ci(env, method, alpha, ndata, reps)
with open(name, 'wb') as pkl:
pickle.dump(z, pkl)
return z
def plotit(d, title, ax=None):
sns.set_theme(style='ticks')
columns = []
values = []
for k in d:
columns.append(k)
values.append(d[k])
values = np.stack(values, axis=1)
data = pd.DataFrame(values, columns=columns)
if ax is None:
fig, ax = plt.subplots()
sns.lineplot(data=data, palette="tab10", linewidth=2.5, ci=None, ax=ax)
ax.set(xlabel="samples", ylabel="width", ylim=(-0.04,1.04), title=title)
ax.legend(loc='lower left')
return ax
def coverage_experiment():
res2d = evaluate('cov2d.pkl', bet_2d, alpha=0.05, ndata=100000, reps=1000, wsq=10)
res1d = evaluate('cov1d.pkl', bet_1d, alpha=0.05, ndata=100000, reps=1000, wsq=10)
return res2d, res1d
def width_experiment(n, wsq, tv):
res1d = evaluate(f'width1d_{wsq}_{tv}.pkl', bet_1d, alpha=0.05, ndata=n, reps=20, wsq=wsq, tv=tv)
res2d = evaluate(f'width2d_{wsq}_{tv}.pkl', bet_2d, alpha=0.05, ndata=n, reps=20, wsq=wsq, tv=tv)
reslog = evaluate(f'widthlog_{wsq}_{tv}.pkl', bet_log, alpha=0.05, ndata=n, reps=5, wsq=wsq, tv=tv)
resiqp = evaluate(f'widthiqp_{wsq}_{tv}.pkl', bet_iqp, alpha=0.05, ndata=n, reps=5, wsq=wsq, tv=tv)