-
Notifications
You must be signed in to change notification settings - Fork 144
/
Copy pathsnowflake-table-catalog.py
381 lines (314 loc) · 11.8 KB
/
snowflake-table-catalog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
#from turtle import onclick
import streamlit as st
import snowflake.connector
import pandas as pd
#import streamlit.components.v1 as components
st.set_page_config(layout="wide")
# Initialize connection.
# Uses st.experimental_singleton to only run once.
@st.experimental_singleton
def init_connection():
return snowflake.connector.connect(**st.secrets["snowflake"])
conn = init_connection()
cur = conn.cursor()
# Perform query.
# Uses st.experimental_memo to only rerun when the query changes or after 10 min.
@st.experimental_memo(ttl=600)
def run_query(query):
with conn.cursor() as cur:
cur.execute(query)
dat = cur.fetchall()
df = pd.DataFrame(dat, columns=[col[0] for col in cur.description])
return df
df = run_query("""SELECT
t.TABLE_ID,
t.TABLE_CATALOG,
t.CREATED,
t.TABLE_NAME,
t.TABLE_SCHEMA,
t.TABLE_OWNER,
t.TABLE_TYPE,
t.IS_TRANSIENT,
t.CLUSTERING_KEY,
t.ROW_COUNT,
t.BYTES,
t.RETENTION_TIME,
t.LAST_ALTERED,
t.AUTO_CLUSTERING_ON,
t.COMMENT,
c.column_count
from
SNOWFLAKE.ACCOUNT_USAGE.TABLES t
left join (
select
table_id,
count(distinct column_id) column_count
from
SNOWFLAKE.ACCOUNT_USAGE.COLUMNS
group by
table_id
) c on c.table_id = t.table_id
where t.table_schema not like '%ANON_HOL%' and deleted is null;""")
df2 = df
# if 'df' not in st.session_state:
# st.session_state.df = df
st.title('Snowflake Table Catalog')
def human_bytes(B):
"""Return the given bytes as a human friendly KB, MB, GB, or TB string."""
B = float(B)
KB = float(1024)
MB = float(KB ** 2) # 1,048,576
GB = float(KB ** 3) # 1,073,741,824
TB = float(KB ** 4) # 1,099,511,627,776
if B < KB:
return '{0} {1}'.format(B, '')
elif KB <= B < MB:
return '{0:.2f}'.format(B / KB)
elif MB <= B < GB:
return '{0:.2f}'.format(B / MB)
elif GB <= B < TB:
return '{0:.2f}'.format(B / GB)
elif TB <= B:
return '{0:.2f}'.format(B / TB)
def human_bytes_text(B):
"""Return the given bytes as a human friendly KB, MB, GB, or TB string."""
B = float(B)
KB = float(1024)
MB = float(KB ** 2) # 1,048,576
GB = float(KB ** 3) # 1,073,741,824
TB = float(KB ** 4) # 1,099,511,627,776
if B < KB:
return 'Bytes'
elif KB <= B < MB:
return 'KB'
elif MB <= B < GB:
return 'MB'
elif GB <= B < TB:
return 'GB'
elif TB <= B:
return 'TB'
def human_format(num):
magnitude = 0
while abs(num) >= 1000:
magnitude += 1
num /= 1000.0
# add more suffixes if you need them
return ('%.2f%s' % (num, ['', 'K', 'M', 'G', 'T', 'P'][magnitude])).replace('.00', '')
def local_css(file_name):
with open(file_name) as f:
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
def remote_css(url):
st.markdown(f'<link href="{url}" rel="stylesheet">',
unsafe_allow_html=True)
def header_bg(table_type):
if table_type == "BASE TABLE":
return "tablebackground"
elif table_type == "VIEW":
return "viewbackground"
else:
return "mvbackground"
remote_css(
"https://cdnjs.cloudflare.com/ajax/libs/semantic-ui/2.4.1/semantic.min.css")
local_css("style.css")
cb_view_details = st.sidebar.checkbox('View Details')
if cb_view_details:
view_details=""
else:
view_details="""style="display: none;" """
selectbox_orderby = st.sidebar.selectbox("Order By", ('A → Z', 'Z → A', 'Data Size ↓', 'Data Size ↑',
'Rows ↓', 'Rows ↑', 'Date Created ↓', 'Date Created ↑', 'Date Altered ↓', 'Date Altered ↑'))
#button_clicked = st.button("OK")
all_option = pd.Series(['All'], index=[9999999])
#TABLE_SCHEMA=TABLE_SCHEMA.append({'TABLE_SCHEMA':'All'},ignore_index = True)
if 'selectbox_database_key' not in st.session_state:
st.session_state.selectbox_database_key = 10
st.session_state.selectbox_schema_key = 20
st.session_state.selectbox_owner_key = 30
st.session_state.selectbox_table_type_key = 40
st.session_state.selectbox_max_rows_key = 50
st.session_state.selectbox_data_size_key = 60
# Table Catalog/Database
fv_database = df['TABLE_CATALOG'].drop_duplicates()
fv_database = fv_database.append(all_option)
selectbox_database = st.sidebar.selectbox(
'Database', fv_database, index=len(fv_database)-1, key=st.session_state.selectbox_database_key)
if selectbox_database != 'All':
df = df.loc[df['TABLE_CATALOG'] == selectbox_database]
else:
df = df.loc[df['TABLE_CATALOG'].isin(fv_database)]
# Table Schema
fv_table_schema = df['TABLE_SCHEMA'].drop_duplicates()
fv_table_schema = fv_table_schema.append(all_option)
selectbox_schema = st.sidebar.selectbox(
"Table Schema", fv_table_schema, len(fv_table_schema)-1, key=st.session_state.selectbox_schema_key)
if selectbox_schema != 'All':
df = df.loc[df['TABLE_SCHEMA'] == selectbox_schema]
else:
df = df.loc[df['TABLE_SCHEMA'].isin(fv_table_schema)]
# Table Owner
fv_owner = df['TABLE_OWNER'].drop_duplicates()
fv_owner = fv_owner.append(all_option)
selectbox_owner = st.sidebar.selectbox(
"Table Owner", fv_owner, len(fv_owner)-1, key=st.session_state.selectbox_owner_key)
if selectbox_owner != 'All':
df = df.loc[df['TABLE_OWNER'] == selectbox_owner]
else:
df = df.loc[df['TABLE_OWNER'].isin(fv_owner)]
# Table Type
fv_table_type = df['TABLE_TYPE'].drop_duplicates()
selectbox_table_type = st.sidebar.multiselect(
'Table Type', fv_table_type, fv_table_type, key=st.session_state.selectbox_table_type_key)
if len(selectbox_table_type) > 0:
df = df.loc[df['TABLE_TYPE'].isin(selectbox_table_type)]
else:
df = df.loc[df['TABLE_TYPE'].isin(fv_table_type)]
# #!!! This part is disabled since sliders are causing performance issues with large datasets.!!!
# # data size selection
max_data_mb = int(df['BYTES'].max()/1048576)
step_size = 1
if max_data_mb>1000:
step_size=10
elif max_data_mb>1000000:
step_size=100
elif max_data_mb>1000000000:
step_size=1000
elif max_data_mb>1000000000000:
step_size=10000
data_size = st.sidebar.slider(
'Data Size (MB)', 0, max_data_mb+1, (0, max_data_mb+1), key=st.session_state.selectbox_data_size_key, step=step_size)
df = df.loc[(df['BYTES'] >= data_size[0]*1048576) &
(df['BYTES'] <= data_size[1]*1048576)]
# rows selection
max_rows = int(df['ROW_COUNT'].max())
step_size = 10
if max_rows>1000000:
step_size=100
elif max_rows>1000000000:
step_size=1000
elif max_rows>1000000000000:
step_size=10000
data_rows = st.sidebar.slider('Number of Rows', 0, max_rows+1,
(0, max_rows+1), key=st.session_state.selectbox_max_rows_key, step=step_size)
df = df.loc[(df['ROW_COUNT'] >= data_rows[0]) &
(df['ROW_COUNT'] <= data_rows[1])]
def reset_button():
st.session_state.selectbox_database_key = st.session_state.selectbox_database_key+1
st.session_state.selectbox_schema_key = st.session_state.selectbox_schema_key+1
st.session_state.selectbox_owner_key = st.session_state.selectbox_owner_key+1
st.session_state.selectbox_table_type_key = st.session_state.selectbox_table_type_key+1
st.session_state.selectbox_max_rows_key = st.session_state.selectbox_max_rows_key+1
st.session_state.selectbox_data_size_key = st.session_state.selectbox_data_size_key+1
clear_button = st.sidebar.button(
label='Clear Selections', on_click=reset_button)
if clear_button:
df = df2
# Card order
orderby_column = ''
orderby_asc = True
if selectbox_orderby == 'A → Z':
orderby_column = 'TABLE_NAME'
orderby_asc = True
elif selectbox_orderby == 'Z → A':
orderby_column = 'TABLE_NAME'
orderby_asc = False
elif selectbox_orderby == 'Data Size ↓':
orderby_column = 'BYTES'
orderby_asc = False
elif selectbox_orderby == 'Data Size ↑':
orderby_column = 'BYTES'
orderby_asc = True
elif selectbox_orderby == 'Rows ↓':
orderby_column = 'ROW_COUNT'
orderby_asc = False
elif selectbox_orderby == 'Rows ↑':
orderby_column = 'ROW_COUNT'
orderby_asc = True
elif selectbox_orderby == 'Date Created ↓':
orderby_column = 'CREATED'
orderby_asc = False
elif selectbox_orderby == 'Date Created ↑':
orderby_column = 'CREATED'
orderby_asc = True
elif selectbox_orderby == 'Date Altered ↓':
orderby_column = 'LAST_ALTERED'
orderby_asc = False
elif selectbox_orderby == 'Date Altered ↑':
orderby_column = 'LAST_ALTERED'
orderby_asc = True
df.sort_values(by=[orderby_column], inplace=True, ascending=orderby_asc)
table_scorecard = """
<div class="ui five small statistics">
<div class="grey statistic">
<div class="value">"""+str(df[df['TABLE_TYPE'] == 'BASE TABLE']['TABLE_ID'].count())+"""
</div>
<div class="grey label">
Tables
</div>
</div>
<div class="grey statistic">
<div class="value">"""+str(df[df['TABLE_TYPE'] == 'VIEW']['TABLE_ID'].count())+"""
</div>
<div class="label">
Views
</div>
</div>
<div class="grey statistic">
<div class="value">"""+str(df[df['TABLE_TYPE'] == 'MATERIALIZED VIEW']['TABLE_ID'].count())+"""
</div>
<div class="label">
Materialized Views
</div>
</div>
<div class="grey statistic">
<div class="value">
"""+human_format(df['ROW_COUNT'].sum())+"""
</div>
<div class="label">
Rows
</div>
</div>
<div class="grey statistic">
<div class="value">
"""+human_bytes(df['BYTES'].sum())+" "+human_bytes_text(df['BYTES'].sum())+"""
</div>
<div class="label">
Data Size
</div>
</div>
</div>"""
table_scorecard += """<br><br><br><div id="mydiv" class="ui centered cards">"""
for index, row in df.iterrows():
table_scorecard += """
<div class="card"">
<div class=" content """+header_bg(row['TABLE_TYPE'])+"""">
<div class=" header smallheader">"""+row['TABLE_NAME']+"""</div>
<div class="meta smallheader">"""+row['TABLE_CATALOG']+"."+row['TABLE_SCHEMA']+"""</div>
</div>
<div class="content">
<div class="description"><br>
<div class="column kpi number">"""+human_format(row['ROW_COUNT'])+"""<br>
<p class="kpi text">Rows</p>
</div>
<div class="column kpi number">"""+human_bytes(row['BYTES'])+"""<br>
<p class="kpi text">"""+human_bytes_text(row['BYTES'])+"""</p>
</div>
<div class="column kpi number">"""+"{0:}".format(row['COLUMN_COUNT'])+"""<br>
<p class="kpi text">Columns</b>
</div>
</div>
</div>
<div class="extra content">
<div class="meta"><i class="table icon"></i> Table Type: """+(row['TABLE_TYPE'])+"""</div>
<div class="meta"><i class="user icon"></i> Owner: """+str(row['TABLE_OWNER'])+""" </div>
<div class="meta"><i class="calendar alternate outline icon"></i> Created On: """+(row['CREATED'].strftime("%Y-%m-%d"))+"""</div>
</div>
<div class="extra content" """+view_details+""">
<div class="meta"><i class="history icon"></i> Time Travel: """+str((row['RETENTION_TIME'])).strip(".0")+"""</div>
<div class="meta"><i class="edit icon"></i> Last Altered: """+(row['LAST_ALTERED'].strftime("%Y-%m-%d"))+"""</div>
<div class="meta"><i class="calendar times outline icon"></i> Transient: """+str(row['IS_TRANSIENT'])+""" </div>
<div class="meta"><i class="th icon"></i> Auto Clustering: """+str(row['AUTO_CLUSTERING_ON'])+""" </div>
<div class="meta"><i class="key icon"></i> Clustering Key: """+str(row['IS_TRANSIENT'])+""" </div>
<div class="meta"><i class="comment alternate outline icon"></i> Comment: """+str(row['IS_TRANSIENT'])+""" </div>
</div>
</div>"""
st.markdown(table_scorecard, unsafe_allow_html=True)