-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_models.py
335 lines (273 loc) · 16.8 KB
/
run_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import os
import sys
from lib.new_dataLoader import ParseData
from tqdm import tqdm
import argparse
import numpy as np
from random import SystemRandom
import torch
import torch.optim as optim
import lib.utils as utils
from torch.distributions.normal import Normal
from lib.create_latent_ode_model import create_LatentODE_model
from lib.utils import compute_loss_all_batches
from torch.utils.tensorboard import SummaryWriter
from pathlib import Path
import pdb
# Generative model for noisy data based on ODE
parser = argparse.ArgumentParser('Latent ODE')
parser.add_argument('--n-balls', type=int, default=5,
help='Number of objects in the dataset.')
parser.add_argument('--niters', type=int, default=500)
parser.add_argument('--lr', type=float, default=1e-5, help="Starting learning rate.")
parser.add_argument('-b', '--batch-size', type=int, default=256)
parser.add_argument('--save', type=str, default='experiments/', help="Path for save checkpoints")
parser.add_argument('--save-graph', type=str, default='plot/', help="Path for save checkpoints")
parser.add_argument('--load', type=str, default=None, help="name of ckpt. If None, run a new experiment.")
parser.add_argument('-r', '--random-seed', type=int, default=1991, help="Random_seed")
parser.add_argument('--data', type=str, default='simple_spring', help="simple_spring,damped_spring,forced_spring,charged,pendulum")
parser.add_argument('--z0-encoder', type=str, default='GTrans', help="GTrans")
parser.add_argument('-l', '--latents', type=int, default=16, help="Size of the latent state")
parser.add_argument('--rec-dims', type=int, default=64, help="Dimensionality of the recognition model .")
parser.add_argument('--ode-dims', type=int, default=128, help="Dimensionality of the ODE func")
parser.add_argument('--rec-layers', type=int, default=2, help="Number of layers in recognition model ")
parser.add_argument('--n-heads', type=int, default=1, help="Number of heads in GTrans")
parser.add_argument('--gen-layers', type=int, default=1, help="Number of layers ODE func ")
parser.add_argument('--extrap', type=str, default="True",
help="Set extrapolation mode. If this flag is not set, run interpolation mode.")
parser.add_argument('--dropout', type=float, default=0.2, help='Dropout rate (1 - keep probability).')
parser.add_argument('--sample-percent-train', type=float, default= 0.6, help='Percentage of training observtaion data')
parser.add_argument('--sample-percent-test', type=float, default=0.6, help='Percentage of testing observtaion data')
parser.add_argument('--augment_dim', type=int, default=64, help='augmented dimension')
parser.add_argument('--edge_types', type=int, default=2, help='edge number in NRI')
parser.add_argument('--odenet', type=str, default="NRI", help='NRI')
parser.add_argument('--solver', type=str, default="rk4", help='dopri5,rk4,euler')
parser.add_argument('--l2', type=float, default=1e-3, help='l2 regulazer')
parser.add_argument('--optimizer', type=str, default="AdamW", help='Adam, AdamW')
parser.add_argument('--clip', type=float, default=10, help='Gradient Norm Clipping')
parser.add_argument('--cutting_edge', type=bool, default=True, help='True/False')
parser.add_argument('--extrap_num', type=int, default=40, help='extrap num ')
parser.add_argument('--rec_attention', type=str, default="attention")
parser.add_argument('--alias', type=str, default="run")
parser.add_argument('--train_cut', type=int, default=1000, help='maximum number of train samples')
parser.add_argument('--test_cut', type=int, default=1000, help='maximum number of test samples')
parser.add_argument('--total_ode_step', type=int, default=60, help='total number of ode steps')
parser.add_argument('--dataset', type=str, default='data', help='dataset directory')
parser.add_argument('--tensorboard_dir', type=str, default='tensorboards', help='tensorboard root directory')
parser.add_argument('--warmup_epoch', type=int, default=20, help='number of warmup epoch to train with forward mse only')
parser.add_argument('--reverse_f_lambda', type=float, default=0, help='weight of reverse_f mse after warmup')
parser.add_argument('--reverse_gt_lambda', type=float, default=0, help='weight of reverse_gt mse after warmup')
parser.add_argument('--energy_lambda', type=float, default=0, help='weight of energy mse after warmup')
parser.add_argument('--device', type=int, default=0, help='running device')
parser.add_argument('--Tmax', type=float, default=2000, help='optimazor')
parser.add_argument('--eta_min', type=float, default=0, help='optimazor')
parser.add_argument('--visdata_dir', type=str, default='visdata', help='vis root directory')
parser.add_argument('--name', type=str, default="LGODE",help="LGODE,DCGODE")
parser.add_argument('--pred_length_cut', type=int, default=60,help="should be less equal to total ode steps")
parser.add_argument('--use_trsode', action='store_true', default=False)
args = parser.parse_args()
assert (int(args.rec_dims % args.n_heads) == 0)
if args.data == "simple_spring":
args.suffix = '_springs5'
args.dataset='data/simple_spring'
if args.data == "damped_spring":
args.suffix = '_springs_damped5'
args.dataset='data/damped_spring'
if args.data == "forced_spring":
args.suffix = '_forced_spring5'
args.dataset='data/forced_spring'
if args.data == "charged":
args.suffix = '_charged5'
args.dataset='data/charged'
if args.data == "pendulum":
args.suffix = '_pendulum3'
args.dataset='data/pendulum'
task = 'extrapolation' if args.extrap == 'True' else 'intrapolation'
############ CPU AND GPU related, Mode related, Dataset Related
if torch.cuda.is_available():
print("Using GPU" + "-" * 80)
device = torch.device("cuda:%d"%args.device)
else:
print("Using CPU" + "-" * 80)
device = torch.device("cpu")
if args.extrap == "True":
print("Running extrap mode" + "-" * 80)
args.mode = "extrap"
elif args.extrap == "False":
print("Running interp mode" + "-" * 80)
args.mode = "interp"
#####################################################################################################
if __name__ == '__main__':
torch.manual_seed(args.random_seed)
np.random.seed(args.random_seed)
############ Saving Path and Preload.
file_name = os.path.basename(__file__)[:-3] # run_models
utils.makedirs(args.save)
utils.makedirs(args.save_graph)
experimentID = args.load
if experimentID is None:
# Make a new experiment ID
experimentID = int(SystemRandom().random() * 100000)
############ Loading Data
print("Loading dataset: " + args.dataset)
dataloader = ParseData(args.dataset, suffix=args.suffix, mode=args.mode, args=args)
test_encoder, test_decoder, test_graph, test_batch = dataloader.load_data(sample_percent=args.sample_percent_test,
batch_size=args.batch_size,
data_type="test",
cut_num=args.test_cut)
train_encoder, train_decoder, train_graph, train_batch = dataloader.load_data(
sample_percent=args.sample_percent_train, batch_size=args.batch_size, data_type="train",
cut_num=args.train_cut)
input_dim = dataloader.feature
############ Command Related
input_command = sys.argv
ind = [i for i in range(len(input_command)) if input_command[i] == "--load"]
if len(ind) == 1:
ind = ind[0]
input_command = input_command[:ind] + input_command[(ind + 2):]
input_command = " ".join(input_command)
############ Model Select
# Create the model
obsrv_std = 0.01
obsrv_std = torch.Tensor([obsrv_std]).to(device)
z0_prior = Normal(torch.Tensor([0.0]).to(device), torch.Tensor([1.]).to(device))
model = create_LatentODE_model(args, input_dim, z0_prior, obsrv_std, device)
##################################################################
# Load checkpoint and evaluate the model
if args.load is not None:
ckpt_path = os.path.join(args.load)
utils.get_ckpt_model(ckpt_path, model, device)
##################################################################
# Training
log_dir = os.path.join("/home/zijiehuang", "PIGODE_logs", '%s_%d_%s' % (args.data, args.total_ode_step, args.name))
Path(log_dir).mkdir(parents=True, exist_ok=True)
logname = 'niters%d_lr%f-%d-%f_warmup-epoch%d_reverse_f_lambda%.2f_reverse_gt_lambda%.2f_traincut%d_testcut%d_observ-ratio_train%.2f_test%.2f.log'%(
args.niters, args.lr, args.Tmax, args.eta_min,
args.warmup_epoch, args.reverse_f_lambda,
args.reverse_gt_lambda,args.train_cut,args.test_cut,args.sample_percent_train,args.sample_percent_test
)
logger = utils.get_logger(logpath=os.path.join(log_dir,logname), filepath=os.path.abspath(__file__))
logger.info(input_command)
logger.info(str(args))
logger.info(args.alias)
# Optimizer
if args.optimizer == "AdamW":
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.l2)
elif args.optimizer == "Adam":
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.l2)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.Tmax, args.eta_min)
wait_until_kl_inc = 10
best_test_mse = np.inf
best_train_mse = np.inf
n_iters_to_viz = 1
writer = SummaryWriter(log_dir=os.path.join(
args.tensorboard_dir,
'%s_%d_%s' % (args.data, args.total_ode_step,args.name),
'observe_ratio_train%.2f_test%.2f' % (args.sample_percent_train, args.sample_percent_test),
'niters%d_lr%f-%d-%f_warmup_epoch%d_reverse_f_lambda%.2f_reverse_gt_lambda%.2f_traincut%d_testcut%d' % (
args.niters, args.lr, args.Tmax, args.eta_min,
args.warmup_epoch, args.reverse_f_lambda,
args.reverse_gt_lambda,args.sample_percent_train,args.sample_percent_test)
))
def train_single_batch(model, batch_dict_encoder, batch_dict_decoder, batch_dict_graph, energy_lambda ,reverse_f_lambda,reverse_gt_lambda):
optimizer.zero_grad()
train_res,_,_,_ = model.compute_all_losses(batch_dict_encoder, batch_dict_decoder, batch_dict_graph,
n_traj_samples=3, energy_lambda=energy_lambda,reverse_f_lambda=reverse_f_lambda,reverse_gt_lambda=reverse_gt_lambda)
loss = train_res["loss"]
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optimizer.step()
loss_value = loss.data.item()
del loss
torch.cuda.empty_cache()
return loss_value, train_res["mse"], train_res["likelihood"],train_res["forward_gt_mse"],train_res["reverse_f_mse"],train_res["reverse_gt_mse"],train_res["forward_gt_mape"]
def train_epoch(epo):
model.train()
loss_list = []
mse_list = []
forward_gt_mse_list =[]
reverse_f_mse_list = []
reverse_gt_mse_list = []
forward_gt_mape_list = []
likelihood_list = []
kl_first_p_list = []
std_first_p_list = []
torch.cuda.empty_cache()
for itr in tqdm(range(train_batch)):
batch_dict_encoder = utils.get_next_batch_new(train_encoder, device)
batch_dict_graph = utils.get_next_batch_new(train_graph, device)
batch_dict_decoder = utils.get_next_batch(train_decoder, device)
loss, mse, likelihood,forward_gt_mse,reverse_f_mse,reverse_gt_mse,forward_gt_mape = train_single_batch(model, batch_dict_encoder, batch_dict_decoder, batch_dict_graph,energy_lambda,
reverse_f_lambda,reverse_gt_lambda)
# saving results
loss_list.append(loss), mse_list.append(mse), likelihood_list.append(
likelihood), forward_gt_mse_list.append(
forward_gt_mse), reverse_f_mse_list.append(reverse_f_mse), reverse_gt_mse_list.append(reverse_gt_mse),forward_gt_mape_list.append(
forward_gt_mape)
#
del batch_dict_encoder, batch_dict_graph, batch_dict_decoder
# train_res, loss
torch.cuda.empty_cache()
scheduler.step()
message_train = 'Epoch {:04d} | [Train seq (cond on sampled tp)] | Loss {:.6f} | Forward gt MSE {:.6f} | Reverse f MSE {:.6f} | Reverse gt MSE {:.6f} | Forward gt MAPE {:.6f} '.format(
epo,
np.mean(loss_list),
np.mean(forward_gt_mse_list), np.mean(reverse_f_mse_list),np.mean(reverse_gt_mse_list),np.mean(forward_gt_mape_list))
# return message_train ,np.mean(energy_mse_list), np.mean(forward_gt_mse_list), np.mean(reverse_f_mse_list),np.mean(reverse_gt_mse_list)
return message_train , np.mean(forward_gt_mse_list), np.mean(reverse_f_mse_list),np.mean(reverse_gt_mse_list)
for epo in range(1, args.niters + 1):
if epo<=args.warmup_epoch:
reverse_f_lambda = 0
reverse_gt_lambda = 0
energy_lambda=0
else:
reverse_f_lambda = args.reverse_f_lambda
reverse_gt_lambda = args.reverse_gt_lambda
energy_lambda = args.energy_lambda
# message_train,train_energy_mse,train_forward_gt_mse,train_reverse_f_mse,train_reverse_gt_mse = train_epoch(epo)
message_train,train_forward_gt_mse,train_reverse_f_mse,train_reverse_gt_mse = train_epoch(epo)
if epo % n_iters_to_viz == 0:
model.eval()
test_res,gt,f, r = compute_loss_all_batches(model, test_encoder, test_graph, test_decoder,
n_batches=test_batch, device=device,
n_traj_samples=3, energy_lambda=energy_lambda,reverse_f_lambda= reverse_f_lambda,reverse_gt_lambda=reverse_gt_lambda)
# pdb.set_trace()
message_test = 'Epoch {:04d} [Test seq (cond on sampled tp)] | r_f_lambda {:.4f} | r_gt_lambda {:.4f} | Loss {:.6f} | Forward gt MSE {:.6f} | Reverse f MSE {:.6f} | Reverse gt MSE {:.6f}| Forward gt MAPE {:.6f}'.format(
epo, reverse_f_lambda, reverse_gt_lambda,
test_res["loss"],
test_res["forward_gt_mse"], test_res["reverse_f_mse"], test_res["reverse_gt_mse"],test_res["forward_gt_mape"])
logger.info("Experiment " + str(experimentID))
logger.info(message_train)
logger.info(message_test)
# logger.info(
# "KL coef: {}".format(kl_coef))
print("data: %s, encoder: %s, lr: %s, epoch: %s, train_sample: %s,test_sample: %s, mode: %s, energy_lambda: %s, reverse_f_lambda: %s , reverse_gt_lambda: %s" % (
args.data, args.z0_encoder, str(args.lr), str(args.niters), str(args.sample_percent_train), str(args.sample_percent_test), args.mode,energy_lambda,reverse_f_lambda,reverse_gt_lambda))
if test_res["forward_gt_mse"] < best_test_mse:
best_test_mse = test_res["forward_gt_mse"]
best_test_mape=test_res["forward_gt_mape"]
message_test_best = 'Epoch {:04d} [Test seq (cond on sampled tp)] | Best forward gt mse {:.6f}| Best forward gt mape {:.6f}'.format(epo,
best_test_mse,best_test_mape)
ckpt_path = os.path.join(args.save, "experiment_" + str(
experimentID) + "_" + args.data + "_" + str(
args.total_ode_step) + "_" + args.name +"_obratio_"+str(args.sample_percent_train)+"_rflambda_"+str(args.reverse_f_lambda)+ "_epoch_" + str(epo) + "_mse_" + str(
best_test_mse) + "_mape_" + str(
best_test_mape) + '.ckpt')
torch.save({
'args': args,
'state_dict': model.state_dict(),
}, ckpt_path)
logger.info(message_test_best)
if train_forward_gt_mse < best_train_mse:
best_train_mse = train_forward_gt_mse
message_train_best = 'Epoch {:04d} [Train seq (cond on sampled tp)] | B train forward gt mse {:.6f}'.format(
epo,best_train_mse)
logger.info(message_train_best)
writer.add_scalar('train_MSE/train_forward_gt_mse', train_forward_gt_mse, epo)
writer.add_scalar('train_MSE/train_reverse_f_mse', train_reverse_f_mse,epo)
writer.add_scalar('train_MSE/train_reverse_gt_mse', train_reverse_gt_mse, epo)
writer.add_scalar('test_MSE/test_forward_gt_mse', test_res["forward_gt_mse"], epo)
writer.add_scalar('test_MSE/test_reverse_f_mse', test_res["reverse_f_mse"], epo)
writer.add_scalar('test_MSE/test_reverse_gt_mse', test_res["reverse_gt_mse"], epo)
torch.cuda.empty_cache()
writer.close()