-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
485 lines (405 loc) · 18.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
from copy import deepcopy
import torch
import matplotlib.pyplot as plt
from tqdm import tqdm
from sample import categorical_sample, batch_sample
import collections, pdb
# function to reduce bloat in train()
def create_optimizer(logger, optimizer, parameters, lr, weight_decay, options=None):
"""
options: a dict with options for optimizer, currently unused
"""
if optimizer == 'sgd':
return torch.optim.SGD(parameters, lr=lr, weight_decay=weight_decay)
elif optimizer == 'rmsprop':
return torch.optim.RMSprop(parameters, lr=lr, weight_decay=weight_decay)
elif optimizer == 'adagrad':
return torch.optim.Adagrad(parameters, lr=lr, weight_decay=weight_decay)
elif optimizer == 'adam':
return torch.optim.Adam(parameters, lr=lr, weight_decay=weight_decay)
elif optimizer == 'adamax':
return torch.optim.Adamax(parameters, lr=lr, weight_decay=weight_decay)
else:
raise logger.exception("Unsupported optimizer: {}".format(name))
class EarlyStopping():
def __init__(self, patience, tolerance=5e-6):
self.cur_val = None
self.p = patience
self.count = 0
self.tol = tolerance
self.model_state = None
def update_meter(self, loss_val, model_state=None):
if self.cur_val is None:
self.cur_val = loss_val
self.model_state = model_state
return False
else:
stop = False
if self.cur_val-loss_val < self.tol:
self.count = self.count + 1
if self.count >= self.p:
stop = True
else:
self.cur_val = loss_val
self.model_state = model_state
self.count = 1
stop = False
return stop
def train_metadata():
return ['optimizer', 'epochs', 'lr',
'warmup', 'earlystop', 'patience',
'weightdecay', 'schedpatience',
'tempinit', 'temprate', 'tempmin',
'earlytol', 'ksamples', 'task', 'batchsize' ]
def train_metrics_record():
"""
gradient_norm: regex to capture which weigh tensor gradients should be tracked
"""
return ['gradient_norm']
def train(logger, device, data_stream, val_stream, model, train_params, loss_module, recorder=None):
"""
logger: for logging trainig progress
device: whether to train on gpu or cpu
data_stream: a pytorch dataloader
val_stream: a pytorch dataloader
model: the model to train
train_params: a dict, containing information like optimizer, lr, epochs, etc
loss_fn: the training loss function
val_loss_fn: the validation loss function
"""
# training parameters that are needed
algo_name = train_params['task'] # string
epochs = train_params['epochs'] # positive int
lr = train_params['lr'] # positive float
warm_up_steps = train_params['warmup'] # positive int
early_stop = train_params['earlystop'] # bool
early_tol = train_params['earlytol'] # positive small float
patience = train_params['patience'] # positive int
sched_patience = train_params['schedpatience'] # positive or 0 int
temp = train_params['tempinit'] # temp init
temprate = train_params['temprate'] # temp rate
tempmin = train_params['tempmin'] # temp min
k_samples = train_params['ksamples'] # positive int
bsize = train_params['batchsize'] # positive int
# priting the training params to the logger
logger.info("Starting training with the following parameters:")
logger.info(str(train_params))
# creating optimizer
optimizer = create_optimizer(logger,
train_params['optimizer'],
model.parameters(),
train_params['lr'],
train_params['weightdecay']
)
# scheduler for lr changes
if sched_patience == 0:
scheduler = None
else:
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
'min',
factor=0.5,
patience=sched_patience
)
# scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer,
# T_0 = 10,
# T_mult = 1,
# # eta_min= lr/20
# )
# creating early stopping meter if requested
if early_stop:
early_stop_meter = EarlyStopping(patience,
tolerance=early_tol
)
train_traj = []
val_traj = []
val_loss = 0
warmup_steps_done = 0
nbatches = len(data_stream)
for epoch in tqdm(range(epochs)):
model.train()
cur_loss = 0
for ith, batch in enumerate(data_stream):
## this is specific to the model & data we want to train, consider outsourcing to a function
# the general scheme is:
optimizer.zero_grad()
loss = loss_module.train_loss(logger, device, model, batch)
# computing the gradient and applying it
sum(loss).backward()
cur_loss += sum(loss).item()
# clip gradients
torch.nn.utils.clip_grad_norm_(model.parameters(), 8)
# warm_up
if warmup_steps_done < warm_up_steps:
new_lr = (lr /warm_up_steps) * (warmup_steps_done+1)
warmup_steps_done += 1
for param_group in optimizer.param_groups:
param_group['lr'] = new_lr
optimizer.step()
if scheduler is not None and warmup_steps_done >=warm_up_steps:
scheduler.step(val_loss)
# scheduler.step(epoch + ith/nbatches)
# to measure the gradient norm per weight tensor
# for p in model.parameters():
# param_norm = p.grad.data.norm(2).item()
# eval -- potentially add ability to only do this every mth epoch
model.eval()
val_loss = 0
for ith, batch in enumerate(val_stream):
with torch.no_grad():
val_loss += sum(loss_module.val_loss(logger, device, model, batch)).item()
# log epoch
logger.info(
'Epoch {}; Train loss {:.4f}; Val loss {:.4f}'.format(
epoch,
cur_loss/nbatches,
val_loss
)
)
train_traj.append(cur_loss/nbatches)
val_traj.append(val_loss)
# decide whether to stop or not
if early_stop:
stop = early_stop_meter.update_meter(val_loss, model.state_dict())
if stop:
logger.info("Early stopping criterion satisfied")
if early_stop_meter.model_state is not None:
model.load_state_dict(early_stop_meter.model_state)
break
temp = max(temp*temprate, tempmin)
model.temp = temp
f, (ax1, ax2) = plt.subplots(1, 2, figsize=(9, 4))
ax1.plot(range(len(train_traj)), train_traj)
ax2.plot(range(len(val_traj)), val_traj)
ax1.set_title('training trajectory')
ax2.set_title('validation trajectory')
plt.show()
return model.state_dict(), val_loss
def train_seq_reptile(logger, device, data_stream, val_stream, model,
train_params, loss_module_dict, task_list=['bf', 'bfs']):
"""
logger: for logging trainig progress
device: whether to train on gpu or cpu
data_stream: a pytorch dataloader
val_stream: a pytorch dataloader
model: the model to train
train_params: a dict, containing information like optimizer, lr, epochs, etc
loss_fn: the training loss function
val_loss_fn: the validation loss function
"""
# training parameters that are needed
epochs = train_params['epochs'] # positive int
lr = train_params['lr'] # positive float
warm_up_steps = train_params['warmup'] # positive int
early_stop = train_params['earlystop'] # bool
early_tol = train_params['earlytol'] # positive small float
patience = train_params['patience'] # positive int
temp = train_params['tempinit'] # temp init
temprate = train_params['temprate'] # temp rate
tempmin = train_params['tempmin'] # temp min
K = train_params['K']
# priting the training params to the logger
logger.info("Starting training with the following parameters:")
logger.info(str(train_params))
if early_stop:
early_stop_meter = EarlyStopping(patience,
tolerance=early_tol
)
logit = torch.tensor([len(data_stream[task].dataset) for task in task_list])
val_loss = 0
warmup_steps_done = 0
inner_optimizer_state = None
#train_traj = {t:[] for t in task_list}
train_traj = []
val_traj = {t:[] for t in task_list}
for epoch in tqdm(range(epochs)):
cur_loss = 0
model_copy = deepcopy(model)
optimizer = create_optimizer(logger,
train_params['optimizer'],
model_copy.parameters(),
train_params['alpha'],
train_params['weightdecay']
)
if inner_optimizer_state is not None:
optimizer.load_state_dict(inner_optimizer_state)
temp_list = ['bf', 'bf', 'bf', 'bf', 'bf', 'bfs', 'bfs', 'bfs', 'bfs', 'bfs']
model_copy.train()
for i in range(K):
## this is specific to the model & data we want to train, consider outsourcing to a function
# the general scheme is:
optimizer.zero_grad()
taskname = task_list[categorical_sample(logit)]
#taskname = temp_list[i]
# total = 0
# for task in task_list:
# batch = next(iter(data_stream[task]))
# loss = loss_module_dict[task].train_loss(logger, device, model_copy, batch, task)
# total += sum(loss)
# total.backward()
# cur_loss += total
batch = next(iter(data_stream[taskname]))
loss = loss_module_dict[taskname].train_loss(logger, device, model_copy, batch, taskname)
#computing the gradient and applying it
sum(loss).backward()
cur_loss += sum(loss).item()
# clip gradients
torch.nn.utils.clip_grad_norm_(model_copy.parameters(), 8)
# warm_up
# if warmup_steps_done < warm_up_steps:
# new_lr = (lr /warm_up_steps) * (warmup_steps_done+1)
# warmup_steps_done += 1
# for param_group in optimizer.param_groups:
# param_group['lr'] = new_lr
optimizer.step()
inner_optimizer_state = optimizer.state_dict()
with torch.no_grad():
for p, q in zip(model.parameters(), model_copy.parameters()):
p -= lr * (p - q)
#p = q
# eval -- potentially add ability to only do this every mth epoch
model.eval()
val_loss = collections.defaultdict(float)
for taskname in task_list:
for ith, batch in enumerate(val_stream[taskname]):
with torch.no_grad():
val_loss[taskname] += sum(loss_module_dict[taskname].val_loss(logger, device, model, batch, taskname)).item()
val_traj[taskname].append(val_loss[taskname])
train_traj.append(cur_loss/K)
log_info = 'Epoch {}; Train loss {:.4f};'.format(
epoch,
cur_loss/K
)
for taskname in task_list:
log_info += ' Val loss %s %f;'% (taskname, val_loss[taskname])
# log epoch
logger.info(log_info)
total_val_loss = 0
for k in val_loss:
total_val_loss += val_loss[k]
# decide whether to stop or not
if early_stop:
stop = early_stop_meter.update_meter(total_val_loss, model.state_dict())
if stop:
logger.info("Early stopping criterion satisfied")
if early_stop_meter.model_state is not None:
model.load_state_dict(early_stop_meter.model_state)
break
temp = max(temp*temprate, tempmin)
model.temp = temp
f, axes = plt.subplots(1, len(task_list)+1, figsize=(9, 9//(len(task_list)+1)))
axes[0].plot(range(len(train_traj)), train_traj)
axes[0].set_title('training trajectory')
for i in range(len(task_list)):
axes[i+1].plot(range(len(val_traj[task_list[i]])), val_traj[task_list[i]])
axes[i+1].set_title('%s validation trajectory'%task_list[i])
plt.show()
return model.state_dict(), val_loss
def train_adapt_sched(logger, device, data_stream, val_stream, model,
train_params, loss_module_dict, base_performance:torch.Tensor,
task_list=['bf', 'bfs'], epsilon=1e-5):
# training parameters that are needed
algo_name = train_params['task'] # string
epochs = train_params['epochs'] # positive int
lr = train_params['lr'] # positive float
warm_up_steps = train_params['warmup'] # positive int
early_stop = train_params['earlystop'] # bool
early_tol = train_params['earlytol'] # positive small float
patience = train_params['patience'] # positive int
sched_patience = train_params['schedpatience'] # positive or 0 int
temp = train_params['tempinit'] # temp init
temprate = train_params['temprate'] # temp rate
tempmin = train_params['tempmin'] # temp min
exponent = train_params['exponent']
batchsize = train_params['batchsize']
# priting the training params to the logger
logger.info("Starting training with the following parameters:")
logger.info(str(train_params))
# creating optimizer
optimizer = create_optimizer(logger,
train_params['optimizer'],
model.parameters(),
train_params['lr'],
train_params['weightdecay']
)
# scheduler for lr changes
if sched_patience == 0:
scheduler = None
else:
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
'min',
factor=0.5,
patience=sched_patience
)
if early_stop:
early_stop_meter = EarlyStopping(patience,
tolerance=early_tol
)
ones = torch.ones_like(base_performance)
prev_val = base_performance
task_to_idx = {task_list[i]:i for i in range(len(task_list))}
val_loss = 0
warmup_steps_done = 0
for epoch in tqdm(range(epochs)):
cur_loss = 0
weights = 1/(torch.minimum(base_performance / prev_val, ones).pow(exponent) + epsilon)
prob = weights / weights.sum()
sizes = (batchsize * prob).int()
batches = []
for task in task_list:
batches.append(next(iter(data_stream[task])))
task_to_batch = batch_sample(batches, sizes, task_list)
model.train()
## this is specific to the model & data we want to train, consider outsourcing to a function
# the general scheme is:
optimizer.zero_grad()
total_loss = 0
for task in task_to_batch:
loss = loss_module_dict[task].train_loss(logger, device, model, task_to_batch[task], task)
total_loss += sum(loss)
cur_loss += sum(loss).item()
total_loss.backward()
# clip gradients
torch.nn.utils.clip_grad_norm_(model.parameters(), 8)
# warm_up
if warmup_steps_done < warm_up_steps:
new_lr = (lr /warm_up_steps) * (warmup_steps_done+1)
warmup_steps_done += 1
for param_group in optimizer.param_groups:
param_group['lr'] = new_lr
optimizer.step()
with torch.no_grad():
for p, q in zip(model.parameters(), model.parameters()):
p -= lr * (p - q)
if scheduler is not None and warmup_steps_done >=warm_up_steps:
scheduler.step(val_loss)
# scheduler.step(epoch + ith/nbatches)
# eval -- potentially add ability to only do this every mth epoch
model.eval()
val_loss = collections.defaultdict(float)
for taskname in task_list:
for ith, batch in enumerate(val_stream[taskname]):
with torch.no_grad():
val_loss[taskname] += sum(loss_module_dict[taskname].val_loss(logger, device, model, batch, taskname)).item()
prev_val[task_to_idx[taskname]] = val_loss[taskname]
log_info = 'Epoch {}; Train loss {:.4f};'.format(
epoch,
cur_loss
)
for taskname in task_list:
log_info += ' Val loss %s %f;'% (taskname, val_loss[taskname])
# log epoch
logger.info(log_info)
total_val_loss = 0
for k in val_loss:
total_val_loss += val_loss[k]
# decide whether to stop or not
if early_stop:
stop = early_stop_meter.update_meter(total_val_loss, model.state_dict())
if stop:
logger.info("Early stopping criterion satisfied")
if early_stop_meter.model_state is not None:
model.load_state_dict(early_stop_meter.model_state)
break
temp = max(temp*temprate, tempmin)
model.temp = temp
return model.state_dict(), val_loss