-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_streams.py
92 lines (83 loc) · 4.26 KB
/
get_streams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import dataloaders as dl
from torch.utils.data import DataLoader, RandomSampler
import collections, pdb
def multi_stream(ngraph_train, ngraph_val, nnode, logger, algo_names,
ngraph_test:list, nnode_test:list, graph='erdosrenyi', batchsize=10):
train_datafp = 'Data/train_%s%s_%s' % (graph, ngraph_train, nnode)
val_datafp = 'Data/val_%s%s_%s' % (graph, ngraph_val, nnode)
test_datafp = ['Data/test_%s%s_%s' % (graph, ngraph_test[i], nnode_test[i]) for i in range(len(nnode_test))]
dset = dl.MultiAlgo
train_stream = DataLoader(dset(logger,train_datafp.split(' '),algo_names,"Train"),
shuffle = True,
batch_size = batchsize,
collate_fn = dl.collate_multi_algo,
drop_last = False
)
val_stream = DataLoader(dset(logger,val_datafp.split(' '),algo_names,"Validation"),
shuffle = False,
batch_size = batchsize,
collate_fn = dl.collate_multi_algo,
drop_last = False
)
test_stream = []
for fp in test_datafp:
test_stream.append(DataLoader(dset(logger,[fp],algo_names,'Test'),
shuffle = False,
batch_size = batchsize,
collate_fn = dl.collate_multi_algo,
drop_last = False
)
)
return train_stream, val_stream, test_stream
algo_to_dataset = {
'bfs' : dl.ReachabilitySteps,
'bf' : dl.BFSteps
}
algo_to_collate = {
'bfs' : dl.collate_reach,
'bf' : dl.collate_bf
}
def seq_reptile_stream(ngraph_train:list, ngraph_val, nnode, logger, algo_names,
ngraph_test:list, nnode_test:list, graph='erdosrenyi', batchsize=10):
train_datafp = ['Data/train_%s%s_%s' % (graph, ngraph, nnode) for ngraph in ngraph_train]
val_datafp = 'Data/val_%s%s_%s' % (graph, ngraph_val, nnode)
test_datafp = ['Data/test_%s%s_%s' % (graph, ngraph_test[i], nnode_test[i]) for i in range(len(nnode_test))]
dset = dl.MultiAlgo
train_stream = {}
for i in range(len(algo_names)):
algo = algo_names[i]
ds = dset(logger, train_datafp[i].split(' '), [algo])
# ds = algo_to_dataset[algo](logger,train_datafp[i].split(' '),"Train")
sampler = RandomSampler(ds, replacement=True)
train_stream[algo] = DataLoader(ds,
shuffle = True,
batch_size = batchsize,
#sampler=sampler,
#collate_fn = algo_to_collate[algo],
collate_fn=dl.collate_multi_algo,
drop_last = False
)
#pdb.set_trace()
val_stream = {}
for algo in algo_names:
#ds = algo_to_dataset[algo](logger,val_datafp.split(' '),"Validation")
ds = dset(logger, val_datafp.split(' '), [algo],"Validation")
val_stream[algo] = DataLoader(ds,
shuffle = False,
batch_size = batchsize,
#collate_fn = algo_to_collate[algo],
collate_fn=dl.collate_multi_algo,
drop_last = False
)
test_stream = collections.defaultdict(list)
for fp in test_datafp:
for algo in algo_names:
ds = algo_to_dataset[algo](logger,[fp],'Test')
test_stream[algo].append(DataLoader(ds,
shuffle = False,
batch_size = batchsize,
collate_fn = algo_to_collate[algo],
drop_last = False
)
)
return train_stream, val_stream, test_stream