-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnewPlotlyData.py
257 lines (176 loc) · 7.53 KB
/
newPlotlyData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import plotly.offline as pyo
import pandas as pd
import matplotlib.pyplot as plt
import plotly.graph_objs as go
import csv
import xlrd
import sqlite3
import unicodecsv as csv
import plotly.express as px
import numpy as np
from collections import Counter
import chart_studio.tools as tls
import chart_studio.plotly as py
import statistics
def connect():
conn = sqlite3.connect("Flask_Jade_Sample/TestFlaskJadeWeb/Users.db")
cursor = conn.cursor()
cursor.execute('SELECT * FROM JOBS')
with open('output.csv','wb') as out_csv_file:
csv_out = csv.writer(out_csv_file)
# write header
csv_out.writerow([d[0] for d in cursor.description])
# write data
for result in cursor:
csv_out.writerow(result)
conn.close()
#----------NOT AS GOOD AS NEWSKILLS()0-------
def skillGraph():
jobs = pd.read_csv(r'C:\Users\lilyk\Desktop\Capstone_project-master\output.csv')
skills = (jobs['skills'])
count = skills.value_counts()
count = (count.head(10))
skillset = (count.axes)
skillsNew = []
for i in range (0,10):
skillsNew.append(skillset[0][i])
fig = px.bar(jobs, x= skillsNew, y = count, color = skillsNew, labels={'y': 'Frequency', 'x': 'Skill Set'}, title = 'Top 10 Most Desired Skill Sets')
fig.show()
#FREQ OF JOB CAT GRAPH
def catCount():
jobs= pd.read_csv(r'C:\Users\lilyk\Desktop\Capstone_project-master\output.csv')
cat = jobs['category']
count = (cat.value_counts())
a = ['Artificial Inetlligence', 'Software Engineer', 'Deep Learning', 'Machine Learning']
t = []
t.append(count['Artificial Intelligence'])
t.append(count['Software Engineer'])
t.append(count['Deep Learning'])
t.append(count['Machine Learning'])
fig2 = px.bar(jobs, x = a, y= t, color = a, labels={'y': 'Frequency', 'x': 'Category'}, title= ' Frequency of Job Categories')
fig2.show()
#This puts it in your cloud for your Chart Studios Account
#You can switch it to be your account/api_key from your account.
tls.set_credentials_file(username = 'lbecker7', api_key = '3ztc7kdqWPHtPtkhusiy')
url = py.plot(fig2, filename = 'categoryFig', auto_open = True)
return (tls.get_embed(url))
#-----------Kind of Working---------
#thots: maybe try separating them and making different graphs for hourly/salary jobs?
def salaries():
jobs= pd.read_csv(r'C:\Users\lilyk\Desktop\Capstone_project-master\output.csv')
salary = jobs['salary'].dropna()
category = jobs['category'].dropna().head(200)
salary = np.array(salary)
titles = jobs['jobTitle'].dropna().head(200)
sals = []
for i in range (len(salary)):
test = (salary[i].split())
nums = []
for i in test:
if i.startswith('$'):
number = (i.strip('$'))
number = number.replace(",",'')
number = float(number)
nums.append(number)
else:
sals.append(0.0)
sals.append(statistics.mean(nums))
fig3 = px.bar(jobs, x=category, y = sals, color = sals,
labels={'y': 'Salaries', 'x': 'Category'},title = 'Salaries for Different Job Categories'
, height=400)
tls.set_credentials_file(username = 'lbecker7', api_key = '3ztc7kdqWPHtPtkhusiy')
url = py.plot(fig3, filename = 'salFig', auto_open = True)
return (tls.get_embed(url))
#SKILLS GRAPH
def newSkills():
jobs = pd.read_csv(r'C:\Users\lilyk\Desktop\Capstone_project-master\output.csv')
skills = (jobs['skills'].dropna())
skills = skills.str.split(',')
#GETS THE UNIQUE SKILLS
u = []
for x in skills:
for i in x:
u.append(i)
countDict = (Counter(u))
vals = countDict.values()
keys = countDict.keys()
keys,values = zip(*countDict.items())
fig = px.bar(jobs, x= keys, y = values,color = keys, labels={'y': 'Frequency', 'x': 'Skill'}, title = 'Most Desired Skills')
#fig.show()
#This puts it in your cloud for your Chart Studios Account
#You can switch it to be your account/api_key from your account.
tls.set_credentials_file(username = 'lbecker7', api_key = '3ztc7kdqWPHtPtkhusiy')
url = py.plot(fig, filename = 'skillFig', auto_open = True)
return (tls.get_embed(url))
#EDUCATION GRAPH
def edus():
jobs = pd.read_csv(r'C:\Users\lilyk\Desktop\Capstone_project-master\output.csv')
edus = (jobs['education'].dropna())
edus = edus.str.split(',')
#GETS THE UNIQUE EDUS
u = []
for x in edus:
for i in x:
i = i.replace('bachelors', "bachelor's")
u.append(i)
countDict = (Counter(u))
vals = countDict.values()
keys = countDict.keys()
keys,values = zip(*countDict.items())
fig = px.bar(jobs, x= keys, y = values,color = keys, labels={'y': 'Frequency', 'x': 'Education'}, title = 'Most Desired Education Levels')
#fig.show()
#This puts it in your cloud for your Chart Studios Account
#You can switch it to be your account/api_key from your account.
tls.set_credentials_file(username = 'lbecker7', api_key = '3ztc7kdqWPHtPtkhusiy')
url = py.plot(fig, filename = 'eduFig', auto_open = True)
return (tls.get_embed(url))
#NOT ACCURATE - DOES NOT WORK
def edu_sal():
jobs = pd.read_csv(r'C:\Users\lilyk\Desktop\Capstone_project-master\output.csv')
#makes it so u can graph, but messes up data
edus = (jobs['education'].fillna('Not Specified').head(235))
edus = edus.str.split(',')
#GETS THE UNIQUE EDUS
u = []
for x in edus:
for i in x:
i = i.replace('bachelors', "bachelor's")
u.append(i)
print(len(u))
#keys,values = zip(*countDict.items())
##KEYS IS EDUS
salary = jobs['salary'].dropna()
salary = np.array(salary)
sals = []
for i in range (len(salary)):
# print (salary[i])
test = (salary[i].split())
nums = []
for i in test:
if i.startswith('$'):
number = (i.strip('$'))
number = number.replace(",",'')
#print (number)
number = float(number)
#print (number)
nums.append(number)
else:
pass
try:
sals.append(statistics.mean(nums))
except:
sals.append(nums)
#print (sals)
print (len(sals))
fig = px.scatter(jobs, x= u, y = sals,color = u, labels={'y': 'Sal', 'x': 'Education'}, title = 'edu/sal', size = sals)
tls.set_credentials_file(username = 'lbecker7', api_key = '3ztc7kdqWPHtPtkhusiy')
url = py.plot(fig, filename = 'scatEduSal', auto_open = True)
return (tls.get_embed(url))
#returns a list of the iframes to send to the front end
def getIframes():
iframes = []
iframes.append(newSkills())
iframes.append(catCount())
iframes.append(salaries())
iframes.append(edu_sal())
return (iframes)