-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmlp.py
250 lines (189 loc) · 8.31 KB
/
mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import numpy as np
import math
import random
import utils
class BNLayer:
def __init__(self, parent):
self.parent_layer = parent
self.next_layer = parent.next_layer
self.out_dim = self.parent_layer.out_dim
self.beta = np.zeros(self.out_dim)
self.gamma = np.ones(self.out_dim)
self.dbeta = np.zeros(self.out_dim)
self.dgamma = np.zeros(self.out_dim)
self.lrate = self.parent_layer.learning_rate
self.reg = self.parent_layer.reg
self.momentum = self.parent_layer.momentum
def transform(self, X):
self.X = X
self.mu = np.mean(X, axis=0)
self.var = np.var(X, axis=0)
self.normalized_X = (X - self.mu) / np.sqrt(self.var + 1e-10)
self.vals = self.gamma * self.normalized_X + self.beta
def compute_delta(self):
self.delta = self.next_layer.delta.dot(self.next_layer.W.T) * self.parent_layer.derivative(self.parent_layer.vals)
def compute_para_delta(self):
N, D = self.X.shape
self.Xmu = self.X - self.mu
self.XmuN = self.Xmu/N
self.std_inv = 1. / np.sqrt(self.var + 1e-10)
self.d_normalized_X = self.delta * self.gamma
inv = self.std_inv * self.std_inv * self.std_inv
self.dvar = - np.sum(self.d_normalized_X * self.Xmu, axis = 0) * (1/2.) * inv
self.dmuN = 1./N * (np.sum(self.d_normalized_X * -self.std_inv, axis = 0) - self.dvar * (2) * np.mean(self.Xmu, axis = 0))
self.dX = (self.d_normalized_X * self.std_inv) + 2 * (self.dvar * self.XmuN) + self.dmuN
self.dgamma = np.sum(self.delta * self.normalized_X, axis=0) + self.momentum*self.dgamma
self.dbeta = np.sum(self.delta, axis=0) + self.momentum * self.dbeta
def weight_update(self):
self.bn.para_update()
self.gamma -= self.lrate*self.dgamma
self.beta -= self.lrate*self.dbeta
class LayerArgs:
def __init__(self, in_dim, out_dim, derivative = utils.d_RELU, activate = utils.RELU, layer_type = "HIDDEN", learning_rate = 0.01, momentum = 0., regularization = 0.000):
self.in_dim = in_dim
self.out_dim = out_dim
self.derivative = derivative
self.activate = activate
self.type = layer_type
self.learning_rate = learning_rate
self.momentum = momentum
self.regularization = regularization
class Layer:
def __init__(self, args):
self.in_dim = args.in_dim
self.out_dim = args.out_dim
self.vals = None
self.type = args.type
self.learning_rate = args.learning_rate
self.reg = args.regularization
self.momentum = args.momentum
self.derivative = args.derivative
self.activate = args.activate
self.next_layer = None
self.prev_layer = None
self.initialize_weights()
def initialize_weights(self):
unib = math.sqrt(6)/math.sqrt(self.in_dim + self.out_dim)
self.W = np.random.uniform(-unib, unib, (self.in_dim, self.out_dim))
self.b = np.zeros((1, self.out_dim))
self.dW = np.zeros((self.in_dim, self.out_dim))
self.db = np.zeros((1, self.out_dim))
def epoch_size(self):
return self.vals.shape[0]
def connect_layer(self, next_layer):
self.next_layer = next_layer
next_layer.prev_layer = self
def layer_forward(self):
self.wx = self.prev_layer.vals.dot(self.W) + self.b
if self.type == "INPUT":
self.vals = self.activate(self.wx)
else:
self.bn.transform(self.wx)
self.vals = self.activate(self.bn.vals)
if self.type == "OUTPUT":
self.prob = self.vals / np.sum(self.vals, axis=1, keepdims=True)
def epoch_size(self):
return self.vals.shape[0]
def layer_backward(self, y = None):
if self.type == "OUTPUT":
self.bn.delta = np.copy(self.prob)
self.bn.delta[range(self.epoch_size()), y] -= 1
self.bn.compute_para_delta()
elif self.type == "HIDDEN":
self.bn.compute_delta()
self.bn.compute_para_delta()
self.delta = self.bn.dX
self.dW = (self.prev_layer.vals.T).dot(self.delta) + self.momentum * self.dW
self.db = np.sum(self.delta, axis=0, keepdims=True) + self.momentum * self.db
self.W -= self.learning_rate * self.dW /self.epoch_size()
self.b -= self.learning_rate * self.db /self.epoch_size()
def loss(self, gold):
logprobs = -np.log(self.prob[range(self.epoch_size()), gold])
data_loss = np.sum(logprobs)
return 1./self.epoch_size() * data_loss
def accuracy(self, gold):
preds = np.argmax(self.prob, axis=1)
err = 0.
for i in xrange(len(preds)):
if preds[i] != gold[i]:
err+=1
return 1-err/len(gold)
def add_bn(self):
self.bn = BNLayer(self)
class ModelArgs:
def __init__(self, num_passes = 100, max_iter = 500, batch_size = 20, report_interval = 10):
self.num_passes = num_passes
self.max_iter = max_iter
self.batch_size = batch_size
self.report_interval = report_interval
class Model:
def __init__(self, layer_args, model_arg):
self.layer_args = layer_args
self.max_iter = model_arg.max_iter
self.num_passes = model_arg.num_passes
self.batch_size = model_arg.batch_size
self.report_interval = model_arg.report_interval
def feed_data(self, X_train, y_train, X_test, y_test):
self.X_train = X_train
self.y_train = y_train
self.X_test = X_test
self.y_test = y_test
self.input_dim = self.X_train.shape[1]
self.output_dim = len(self.y_train)
self.train_log_loss = {}
self.test_log_loss = {}
self.train_log_acc = {}
self.test_log_acc = {}
def trial_data(self, X_train_sub, y_train_sub):
self.X_train_sub = X_train_sub
self.y_train_sub = y_train_sub
def make_layer(self, args):
return Layer(args)
def yield_batches(self, features, classes, batchsize):
sets = np.arange(features.shape[0])
np.random.shuffle(sets)
for i in range(0, features.shape[0] - batchsize + 1, batchsize):
e = sets[i:i + batchsize]
yield features[e], classes[e]
def intialize_model(self):
self.input_layer = self.make_layer(self.layer_args[0])
self.output_layer = self.make_layer(self.layer_args[-1])
self.hidden_layers = [self.make_layer(self.layer_args[i]) for i in range(1, len(self.layer_args)-1)]
layers = [self.input_layer] + self.hidden_layers + [self.output_layer]
for i in range(len(layers)-1):
layers[i].connect_layer(layers[i+1])
for i in range(1, len(layers)):
layers[i].add_bn()
def forward(self, x):
self.input_layer.vals = x
for layer in self.hidden_layers:
layer.layer_forward()
self.output_layer.layer_forward()
def loss(self, y):
return self.output_layer.loss(y)
def accuracy(self, y):
return self.output_layer.accuracy(y)
def backward(self, y):
self.output_layer.layer_backward(y)
for layer in self.hidden_layers[::-1]:
layer.layer_backward()
def run_model(self):
n_iter = 0
for i in range(1, self.num_passes+1):
for x, y in self.yield_batches(self.X_train, self.y_train, self.batch_size):
n_iter += 1
self.forward(x)
self.backward(y)
if n_iter%self.report_interval == 0:
# print "MI reported at iteration:", n_iter
self.forward(self.X_train_sub)
yield n_iter, [layer.vals for layer in self.hidden_layers]
self.forward(self.X_test)
self.test_log_loss[i] = self.loss(self.y_test)
self.test_log_acc[i] = self.accuracy(self.y_test)
self.forward(self.X_train)
self.train_log_loss[i] = self.loss(self.y_train)
self.train_log_acc[i] = self.accuracy(self.y_train)
print "Epoch: {}, Train Acc: {}, Test Acc: {}".format(i, self.train_log_acc[i], self.test_log_acc[i])
if n_iter > self.max_iter:
break