

Android Application
Development Cookbook
Second Edition

Over 100 recipes to help you solve the most common
problems faced by Android Developers today

Rick Boyer

Kyle Mew

BIRMINGHAM - MUMBAI

Android Application Development Cookbook
Second Edition

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: March 2016

Production reference: 1220316

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-619-5

www.packtpub.com

Cover image by Karen Ann P. Boyer (karen@eboyer.net)

Credits

Authors
Rick Boyer

Kyle Mew

Reviewer
Emil Atanasov

Commissioning Editor
Edward Gordon

Content Development Editor
Parshva Sheth

Technical Editor
Menza Mathew

Copy Editors
Joanna McMahon

Merilyn Pereira

Project Coordinator
Nikhil Nair

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

Disclaimer

The author is committed to updating the book, feel free to check out his site for updates
to Android N.

About the Authors

Rick Boyer is a senior software engineer with over 20 years of experience, including desktop,
web, and mobile development. His first PDA ignited a passion for mobile development, which
has extended to Windows CE, Windows Phone, and now Android. In 2011, he left the corporate
world to start his own consulting business, NightSky Development. He now focuses exclusively
on Android and provides consulting and development for start-ups and small businesses. Feel
free to contact him through his page, www.eBoyer.Net.

I'd like to start by thanking Nadeem, the acquisition editor, for bringing me in
to this project! I also want to thank Parshva, the content editor, for his kind
words and support while writing these 15 chapters!

Thanks to the friendly staff at my local Starbucks in Starmall, just outside
Manila. If I wasn't writing code samples in my office, I was working on
chapters at Starbucks. I was always greeted with a smile and questions
on how the book was progressing.

A special thanks to Niron for stepping up to the challenge of making the
Android coffee design, used in the cover photo, and Leigh, the manager,
for indulging us while we took pictures of our coffee.

Kyle Mew has been programming since the early eighties and has written for several
technology websites. He has also written three radio plays and two other books on
Android development.

About the Reviewer

Emil Atanasov is an IT consultant with broad experience in mobile technologies. He has
been exploring the field of mobile development since 2006.

Emil has an MSc degree in media informatics from RWTH Aachen University, Germany, and
an MSc in computer science from Sofia University, St. Kliment Ohridski, Bulgaria. He has
worked for several huge USA-based companies and has been a freelancer for several years.
Emil has experience in software design and development. He was involved in the process of
redesigning, improving, and creating a number of mobile apps. Currently, he is focused on the
rapidly growing mobile sector and manages a great team of developers that provide software
solutions to clients around the world.

As an Android team leader and project manager, Emil led a team that developed a part of the
Nook Color firmware, an e-magazine/e-book, which supports the proprietary Barnes & Nobel
and some other e-book formats.

He is one of the people behind reviewing Getting Started with Flurry Analytics, Packt Publishing.
He also contributed largely to Objective C Memory Management, Packt Publishing.

I want to thank my family and friends for being so cool. Thank you for
supporting me even though I'm such a bizarre geeky person, who spends
most of his time in the digital world. Thank you, guys!

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

i

Table of Contents
Preface	 v
Chapter 1: Activities	 1

Introduction	 1
Declaring an activity	 2
Starting a new activity with an intent object	 4
Switching between activities	 6
Passing data to another activity	 10
Returning a result from an activity	 12
Saving an activity's state	 14
Storing persistent activity data	 18
Understanding the activity lifecycle	 19

Chapter 2: Layouts	 25
Introduction	 25
Defining and inflating a layout	 26
Using RelativeLayout	 28
Using LinearLayout	 30
Creating tables – TableLayout and GridLayout	 33
Using ListView, GridView, and Adapters	 38
Changing layout properties during runtime	 41
Optimizing layouts with the Hierarchy Viewer	 42

Chapter 3: Views, Widgets, and Styles	 47
Introduction	 47
Inserting a widget into a layout	 49
Using graphics to show button state	 52
Creating a widget at runtime	 55
Creating a custom component	 57
Applying a style to a View	 59

ii

Table of Contents

Turning a style into a theme	 62
Selecting theme based on the Android version	 63

Chapter 4: Menus	 69
Introduction	 69
Creating an Options menu	 70
Modifying menus and menu items during runtime	 75
Enabling Contextual Action Mode for a view	 78
Using Contextual Batch Mode with a ListView	 82
Creating a pop-up menu	 86

Chapter 5: Exploring Fragments, AppWidgets, and the System UI	 91
Introduction	 91
Creating and using a Fragment	 92
Adding and removing Fragments during runtime	 94
Passing data between Fragments	 98
Creating a shortcut on the Home screen	 108
Creating a Home screen widget	 110
Adding Search to the Action Bar	 118
Showing your app full screen	 123

Chapter 6: Working with Data	 129
Introduction	 129
Storing simple data	 130
Read and write a text file to internal storage	 134
Read and write a text file to external storage	 137
Including resource files in your project	 142
Creating and using an SQLite database	 147
Access data in the background using a Loader	 154

Chapter 7: Alerts and Notifications	 161
Introduction	 161
Lights, Action, and Sound – getting the user's attention!	 162
Creating a Toast using a custom layout	 166
Displaying a message box with AlertDialog	 170
Displaying a progress dialog	 173
Lights, Action, and Sound Redux using Notifications	 176
Creating a Media Player Notification	 182
Making a Flashlight with a Heads-Up Notification	 186

Chapter 8: Using the Touchscreen and Sensors	 191
Introduction	 191
Listening for click and long-press events	 192
Recognizing tap and other common gestures	 194

iii

Table of Contents

Pinch-to-zoom with multi-touch gestures	 197
Swipe-to-Refresh	 199
Listing available sensors – an introduction to the Android
Sensor Framework	 202
Reading sensor data – using the Android Sensor Framework events	 206
Reading device orientation	 210

Chapter 9: Graphics and Animation	 215
Introduction	 215
Scaling down large images to avoid Out of Memory exceptions	 217
A transition animation – defining scenes and applying a transition	 222
Creating a Compass using sensor data and RotateAnimation	 227
Creating a slideshow with ViewPager	 232
Creating a Card Flip Animation with Fragments	 236
Creating a Zoom Animation with a Custom Transition	 243

Chapter 10: A First Look at OpenGL ES	 251
Introduction	 251
Set up the OpenGL ES environment	 252
Drawing shapes on GLSurfaceView	 255
Applying Projection and Camera View while drawing	 261
Moving the triangle with rotation	 263
Rotating the triangle with user input	 265

Chapter 11: Multimedia	 269
Introduction	 269
Playing sound effects with SoundPool	 270
Playing audio with MediaPlayer	 274
Responding to hardware media controls in your app	 278
Taking a photo with the default camera app	 282
Taking a picture using the (old) Camera API	 285
Taking a picture using the Camera2 (the new) API	 290

Chapter 12: Telephony, Networks, and the Web	 299
Introduction	 299
How to make a phone call	 300
Monitoring phone call events	 302
How to send SMS (text) messages	 304
Receiving SMS messages	 308
Displaying a web page in your application	 312
Checking online status and connection type	 315
Getting started with Volley for Internet requests	 318
Canceling a Volley request	 324

iv

Table of Contents

Using Volley to request a JSON response	 326
Using Volley to request an image	 328
Using Volley's NetworkImageView and ImageLoader	 331

Chapter 13: Getting Location and Using Geofencing	 333
Introduction	 333
How to get the last location	 335
Resolving problems reported with the GoogleApiClient
OnConnectionFailedListener	 340
How to receive location updates	 343
Create and monitor a Geofence	 346

Chapter 14: Getting Your App Ready for the Play Store	 353
Introduction	 353
The new Android 6.0 Run-Time permission model	 354
How to schedule an alarm	 358
Receive notification of device boot	 362
Using the AsyncTask for background work	 364
Adding speech recognition to your app	 368
Push Notification using GCM	 371
How to add Google sign-in to your app	 377

Chapter 15: The Backend as a Service Options	 383
Introduction	 383
App42	 384
Backendless	 388
Buddy	 391
Firebase	 394
Kinvey	 396

Index	 401

v

Preface
Android was first released in 2007 after being acquired by Google, Inc. Initially, Android was
primarily used on a handset. Android 3.0 added features to take advantage of the growing
tablet market.

In 2014, Google announced that Android had over 1 billion active users! With over 1 million
applications available on Google Play, there's never been a more exciting time to join the
Android community!

As we begin 2016, we have the recently released Android 6.0 with exciting new features for
both users and developers.

What this book covers
Chapter 1, Activities, discusses Activities, which represent the fundamental building blocks for
most applications. See examples of the most common tasks, such as creating an activity and
passing control from one activity to another.

Chapter 2, Layouts, talks about Layout options; while Activities are fundamental to the UI,
the layout actually defines what the user sees on the screen. Learn the main layout options
available and best practices.

Chapter 3, Views, Widgets, and Styles, explores the basic UI object, from which all layouts
are built. Widgets include everything from buttons and textboxes to more complicated
NumberPicker and Calendar dialogs.

Chapter 4, Menus, teaches you how to use menus in Android. Learn how to create menus and
how to control their behavior at runtime.

Chapter 5, Exploring Fragments, AppWidgets, and the System UI, shows how to create more
flexible user interfaces by reusing UI components with Fragments. Take advantage of new OS
features with translucent system bars or even make the System UI go away completely with
Immersive Mode.

Preface

vi

Chapter 6, Working with Data, helps you discover multiple methods that Android offers for
persisting data, and know when it is the best to use each option. The Loader class example
shows an efficient solution to present the data without tying up the UI Thread.

Chapter 7, Alerts and Notifications, shows multiple options for displaying notifications to your
users. Options range from alerts in your application, using the system notification, and the
Heads Up notification.

Chapter 8, Using the Touchscreen and Sensors, helps you learn the events for handling
the standard user interactions, such as button clicks, long presses, and gestures. Access
the device hardware sensors to determine orientation changes, device movement, and
compass bearing.

Chapter 9, Graphics and Animation, helps you bring your app to life with animations!
Take advantage of the many options Android offers for creating animations—from simple
bitmaps to custom property animations.

Chapter 10, A First Look at OpenGL ES, discusses the OpenGL; when you need
high-performance 2D and 3D graphics, turn to the Open Graphics library. Android
supports OpenGL, a cross-platform Graphics API.

Chapter 11, Multimedia, takes advantage of the hardware features for playing audio. Use
Android intents to call the default camera application or delve into the camera APIs to control
the camera directly.

Chapter 12, Telephony, Networks, and the Web, uses the Telephony functions to initiate a
phone call and to listen for incoming phone events. See how to send and receive SMS (text)
messages. Use the WebView in your application to display web pages and learn how to use
Volley to communicate directly with web services.

Chapter 13, Getting Location and Using Geofencing, shows you how to determine the user's
location and the best practices so your app doesn't drain the battery. Use the new Location
APIs to receive location updates and create Geofences.

Chapter 14, Getting Your App Ready for the Play Store, helps you polish your app for the Play
Store and learn how to implement more advanced features, such as alarms and AsyncTask for
background processing. See how to add Google Cloud Messaging (push notification) to your
app and take advantage of Google Sign-in.

Chapter 15, The Backend as a Service Options, explores what a Backend as a Service
provider can offer your app. Compare several top providers offering native Android support
and free subscription options.

Preface

vii

What you need for this book
Developing Android applications requires the Android SDK, available on multiple platforms,
including Windows, Mac, and Linux.

Though not required, this book uses Android Studio, the official Android IDE. If you are new to
Android development, visit the following link to review the current system requirements and
download Android Studio with the SDK bundle for your platform:

http://developer.android.com/sdk/index.html

The Android SDK and Android Studio are both free of charge.

Who this book is for
This book assumes basic familiarity with programming concepts and Android fundamentals.
Otherwise, if you are new to Android and learn best by jumping into the code, this book
provides a wide range of the most common tasks.

As a "cookbook", it's easy to jump to your topic of interest and get the code working in your
own application as quickly as possible.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

Preface

viii

How it works…
This section usually consists of a detailed explanation of what happened in the
previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, and user input are shown as follows: "Requesting a JSON response
using JsonObjectRequest() basically works the same as StringRequest()."

A block of code is set as follows:

<activity
 android:name=".MainActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name=
 "android.intent.category.LAUNCHER"/>
 </intent-filter>
</activity>

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Use the default Phone &
Tablet option and select Empty Activity when prompted for Activity Type."

Preface

ix

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http://
www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.

2.	 Hover the mouse pointer on the SUPPORT tab at the top.

3.	 Click on Code Downloads & Errata.

4.	 Enter the name of the book in the Search box.

5.	 Select the book for which you're looking to download the code files.

6.	 Choose from the drop-down menu where you purchased this book from.

7.	 Click on Code Download.

Preface

x

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

ff WinRAR / 7-Zip for Windows

ff Zipeg / iZip / UnRarX for Mac

ff 7-Zip / PeaZip for Linux

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

Chapter 1

1

1
Activities

This chapter covers the following recipes:

ff Declaring an activity

ff Starting a new activity with an intent object

ff Switching between activities

ff Passing data to another activity

ff Returning a result from an activity

ff Saving an activity's state

ff Storing persistent activity data

ff Understanding the activity lifecycle

Introduction
The Android SDK provides a powerful tool to program mobile devices, and the best way to
master such a tool is to jump right in. Though you can read this book from beginning to end,
as it is a cookbook, it is specifically designed to allow you to jump to specific tasks and get
the results immediately.

Activities are the fundamental building block of most Android applications as the activity
class provides the interface between the application and screen. Most Android applications
will have at least one activity, if not several (but they are not required). A background service
application will not necessarily require an activity if there is no user interface.

This chapter explains how to declare and launch activities within an application and how to
manage several activities at once by sharing data between them, requesting results from
them, and calling one activity from within another.

Activities

2

This chapter also briefly explores the intent object, which is often used in conjunction with
activities. Intents can be used to transfer data between activities in your own application,
as well as in external applications, such as those included with the Android operating system
(a common example would be to use an intent to launch the default web browser).

To begin developing Android applications, head over to the Android Studio
page to download the new Android Studio IDE and the Android SDK bundle:
http://developer.android.com/sdk/index.html

Declaring an activity
Activities and other application components, such as services, are declared in the
AndroidManifest XML file. Declaring an activity is how we tell the system about our activity
and how it can be requested. For example, an application will usually indicate that at least
one activity should be visible as a desktop icon and serve as the main entry point to the
application.

Getting ready
Android Studio is the new tool used to develop Android applications, replacing the now-
deprecated Eclipse ADT solution. Android Studio will be used for all the recipes shown in this
book, so if you have not already installed it, visit the Android Studio website (the link has been
provided earlier) to install the IDE and the SDK bundle.

How to do it...
For this first example, we'll guide you through creating a new project. Android Studio provides a
Quick Start wizard, which makes the process extremely easy. Follow these steps to get started:

1.	 Launch Android Studio, which brings up the Welcome to Android Studio dialog.

2.	 Click on the Start a new Android Studio project option.

3.	 Enter an application name; for this example, we have used DeclareAnActivity.
Click on Next.

4.	 On the Add an Activity to Mobile dialog, click on the Blank Activity button, and then
click on Next.

5.	 On the Target Android Devices dialog, chose Android 6.0 (API 23) as the minimum
SDK (for this example, it really doesn't matter which API level you chose, as activities
have existed since API level 1, but choosing the latest release is considered to be the
best practice). Click on Next.

Chapter 1

3

6.	 Since we chose the Blank Activity option earlier, the Customize the Activity dialog is
shown. You can leave the defaults as provided, but note the default activity name is
MainActivity. Click on Finish.

After finishing the wizard, Android Studio will create the project files. For this recipe, the two
files that we will examine are MainActivity.java (which corresponds to the activity name
mentioned in Step 6) and AndroidManifest.xml.

If you take a look at the MainActivity.java file, you will realize that it's pretty basic. This is
because we chose the Blank Activity option (in Step 4). Now look at the AndroidManifest.
xml file. This is where we actually declare the activity. Within the <application> element is
the <activity> element:

<activity
 android:name=".MainActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name=
 "android.intent.category.LAUNCHER"/>
 </intent-filter>
</activity>

When viewing this xml within Android Studio, you may notice that the label
element shows the actual text as defined in the strings.xml resource
file. This is just a small example of enhancements in the new IDE.

How it works...
Declaring an activity is a simple matter of declaring the <activity> element and specifying
the name of the activity class with the android:name attribute. By adding the <activity>
element to the Android Manifest, we are specifying our intention to include this component
within our application. Any activities (or any other component for that matter) that are not
declared in the manifest will not be included in the application. Attempting to access or utilize
an undeclared component will result in an exception being thrown at runtime.

In the preceding code, there is another attribute—android:label. This attribute indicates
the title shown on the screen as well as the icon label if this is the Launcher activity.

For a complete list of available application attributes, take a look at
this resource:
http://developer.android.com/guide/topics/
manifest/activity-element.html

Activities

4

Starting a new activity with an intent object
The Android application model can be seen as a service-oriented one, with activities as
components and intents as the messages sent between them. Here, an intent is used to start
an activity that displays the user's call log, but intents can be used to do many things and we
will encounter them throughout this book.

Getting ready
To keep things simple, we are going to use an intent object to start one of Android's built-in
applications rather than create a new one. This only requires a very basic application, so start
a new Android project with Android Studio and call it ActivityStarter.

How to do it...
Again, to keep the example simple so that we can focus on the task at hand, we will create a
function to show an intent in action and call this function from a button on our activity.

Once your new project is created in Android Studio, follow these steps:

1.	 Open the MainActivity.java class and add the following function:
public void launchIntent(View view) {
 Intent intent = new Intent(Intent.ACTION_VIEW);
 intent.setData(Uri.parse("https://www.packtpub.com/"));
 startActivity(intent);
}

While you are typing this code, Android Studio will give this warning on View and
intent: Cannot resolve symbol 'Intent'.

This means that you need to add the library reference to the project. You can do this
manually by entering the following code in the import section:
import android.view.View;

import android.content.Intent;

Alternatively, just click on the words (in the red font), hit Alt + Enter, and let Android
Studio add the library reference for you.

2.	 Open the activity_main.xml file and add the following XML:
<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Launch Browser"

Chapter 1

5

 android:id="@+id/button"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true"
 android:onClick="launchIntent"/>

3.	 Now it's time to run the application and see the intent in action. You will need to
either create an Android emulator (in Android Studio, go to Tools | Android | AVD
Manager) or connect a physical device to your computer.

4.	 When you press the Launch Browser button, you will see the default web browser
open with the URL specified.

How it works...
Though simple, this app demonstrates much of the power behind the Android OS. The intent
object is just a message object. Intents can be used to communicate across your application's
components (such as services and broadcast receivers) as well as with other applications on
the device (as we did in this recipe).

To test on a physical device, you may need to install drivers for your device (the
drivers are specific to the hardware manufacturer). You will also need to enable
Developer Mode on your device. Enabling Developer Mode varies according to
the Android OS version. If you do not see the Developer Mode option in your
device settings, open the About Phone option and begin tapping Build Number.
After three taps, you should see a Toast message telling you that you are on your
way to be a developer. Four more taps will enable the option.

Activities

6

In this recipe, we created an intent object by specifying ACTION_VIEW as what we want to do
(our intention). You may have noticed that when you typed Intent and then the period, Android
Studio provided a pop-up list of possibilities (this is the autocomplete feature), like this:

ACTION_VIEW, along with a URL in the data, indicates that the intention is to view the website,
so the default browser is launched (different data could launch different apps). In this example,
our intent is just to view the URL, so we call the intent with just the startActivity() method.
There are other ways to call the intent depending on our needs. In the Returning a result from
an activity recipe, we will use the startActivityForResult() method.

There's more...
It's very common for Android users to download their favorite apps for web browsing, taking
photos, text messaging, and so on. Using intents, you can let your app utilize your user's
favorite apps instead of trying to reinvent all of this functionality.

See also
To start an activity from a menu selection, refer to the Handling menu selections recipe in
Chapter 4, Menus.

Switching between activities
Often we will want to activate one activity from within another activity. Although this is not
a difficult task, it will require a little more setting up to be done than the previous recipes
as it requires two activities. We will create two activity classes and declare them both in the
manifest. We'll also create a button, as we did in the previous recipe, to switch to the activity.

Chapter 1

7

Getting ready
We'll create a new project in Android Studio, just as we did in the previous recipes, and call
this one ActivitySwitcher. Android Studio will create the first activity, ActivityMain,
and automatically declare it in the manifest.

How to do it...
1.	 Since the Android Studio New Project wizard has already created the first activity,

we just need to create the second activity. Open the ActivitySwitcher project and
navigate to File | New | Activity | Blank Activity, as shown in this screenshot:

Activities

8

2.	 In the Customize the Activity dialog, you can leave the default Activity Name as it is,
which is Main2Activity, or change it to SecondActivity, as shown here:

3.	 Open the MainActivity.java file and add the following function:
public void onClickSwitchActivity(View view) {
 Intent intent = new Intent(this, SecondActivity.class);
 startActivity(intent);
}

4.	 Now, open the activity_main.xml file located in the \res\layout folder and
add the following XML to create the button:
<Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

Chapter 1

9

 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true"
 android:text="Launch SecondActivity"
 android:onClick="onClickSwitchActivity"/>

5.	 You can actually run the code at this point and see the second activity come up.
We're going to go further and add a button to SecondActivity to close it, which
will bring us back to the first activity. Open the SecondActivity.java file and
add this function:
public void onClickClose(View view) {
 finish();
}

6.	 Finally, add the Close button to the SecondActivity layout. Open the
activity_second.xml file and add the following <Button> element
just after the <TextView> element that was generated automatically:
<Button
 android:id="@+id/buttonClose"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Close"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true"
 android:onClick="onClickClose"/>

7.	 Run the application on your device or emulator and see the buttons in action.

How it works...
The real work of this exercise is in the onClickSwitchActivity() method from Step 3.
This is where we declare the second activity for the intent using SecondActivity.class.
We went one step further by adding the close button to the second activity to show a common
real-world situation—launching a new activity, then closing it, and returning to the original
calling activity. This behavior is accomplished in the onClickClose() function. All it does
is call finish(), but that tells the system that we're done with the activity. Finish doesn't
actually return us to the calling activity or any specific activity for that matter; it just closes the
current activity and relies on the back stack. If we want a specific activity, we can again use
the intent object (we just change the class name while creating the intent).

This activity switching does not make a very exciting application. Our activity does nothing
but demonstrate how to switch from one activity to another, which of course will form a
fundamental aspect of almost any application that we develop.

Activities

10

If we had manually created the activities, we would need to add them to the manifest. By
using these steps, Android Studio has already taken care of the XML. To see what Android
Studio did, open the AndroidManifest.xml file and look at the <application> element:

<activity
 android:name=".MainActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER/>
 </intent-filter>
</activity>
<activity
 android:name=".SecondActivity"
 android:label="@string/title_activity_second">
</activity>

One thing to note in the preceding autogenerated code is that the second activity does not
have the <intent-filter> element. The main activity is generally the entry point when
starting the application. That's why MAIN and LAUNCHER are defined—so that the system
will know which activity to launch when the application starts.

See also
ff To learn more about embedding widgets such as the Button, visit Chapter 3, Views,

Widgets, and Styles.

Passing data to another activity
The intent object is defined as a messaging object. As a message object, its purpose is to
communicate with other components of the application. In this recipe, we'll show you how
to pass information with the intent and how to get it out again.

Getting ready
This recipe will pick up from where the previous one ended. We will call this project SendData.

How to do it...
Since this recipe is building on the previous recipe, most of the work is already done.
We'll add an EditText element to the main activity so that we have something to send to
SecondActivity. We'll use the (autogenerated) TextView view to display the message.
Here are the complete steps:

Chapter 1

11

1.	 Open activity_main.xml, remove the existing <TextView> element, and add
the following <EditText> element:
<EditText
 android:id="@+id/editTextData"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>

The <Button> element that we created in the previous recipe doesn't change.

2.	 Now, open the MainActivity.java file and change the
onClickSwitchActivity() method as follows:
public void onClickSwitchActivity(View view) {
 EditText editText = (EditText)findViewById(R.id.editTextData);
 String text = editText.getText().toString();
 Intent intent = new Intent(this, SecondActivity.class);
 intent.putExtra(Intent.EXTRA_TEXT,text);
 startActivity(intent);
}

3.	 Next, open the activity_second.xml file and modify the<TextView> element to
include the ID attribute:
<TextView
 android:id="@+id/textViewText"
 android:text="@string/hello_world"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>

4.	 The last change is to edit the second activity to look for this new data and display it
on the screen. Open SecondActivity.java and edit onCreate() as follows:
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_second);
 TextView textView = (TextView)findViewById(
 R.id.textViewText);
 if (getIntent()!=null && getIntent().hasExtra(
 Intent.EXTRA_TEXT)) {
 textView.setText(getIntent().getStringExtra(
 Intent.EXTRA_TEXT));
 }
}

5.	 Now run the project. Type some text on the main activity and press Launch Second
Activity to see it send the data.

Activities

12

How it works...
As expected, the intent object is doing all the work. We created an intent just as in the
previous recipe and then added some extra data. Did you notice the putExtra() method
call? In our example, we used the already defined Intent.EXTRA_TEXT as the identifier,
but we didn't have to. We can use any key we want (you've seen this concept before if you're
familiar with name/value pairs).

The key point about using name/value pairs is that you have to use the same name to get the
data back out. That's why we used the same key identifier when we read the extra data with
getStringExtra().

The second activity was launched with the intent that we created, so it's simply a matter of
getting the intent and checking for the data sent along with it. We do this in onCreate():

textView.setText(getIntent().getStringExtra(Intent.EXTRA_TEXT));

There's more...
We aren't limited to just sending String data. The intent object is very flexible and already
supports basic data types. Go back to Android Studio and click on the putExtra method.
Then hit Ctrl and the Spacebar. Android Studio will bring up the autocomplete list so that
you can see the different data types that you can store.

Returning a result from an activity
Being able to start one activity from another is all well and good, but we will often need
to know how the called activity has fared in its task or even which activity has been called.
The startActivityForResult() method provides the solution.

Getting ready
Returning a result from an activity is not very different from the way we just called the activity
in the previous recipes. You can either use the project from the previous recipe, or start a new
project and call it GettingResults. Either way, once you have a project with two activities
and the code needed to call the second activity, you're ready to begin.

How to do it...
There are only a few changes needed to get the results:

1.	 First of all, open MainActivity.java and add the following constant to the class:
public static final String REQUEST_RESULT="REQUEST_RESULT";

Chapter 1

13

2.	 Next, change the way the intent is called by modifying the
onClickSwitchActivity() method to expect a result:
public void onClickSwitchActivity(View view) {
 EditText editText = (EditText)findViewById(
 R.id.editTextData);
 String text = editText.getText().toString();
 Intent intent = new Intent(this, SecondActivity.class);
 intent.putExtra(Intent.EXTRA_TEXT,text);
 startActivityForResult(intent,1);
}

3.	 Then, add this new method to receive the result:
@Override
protected void onActivityResult(int requestCode, int
 resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode, data);
 if (resultCode==RESULT_OK) {
 Toast.makeText(this, Integer.toString(
 data.getIntExtra(REQUEST_RESULT, 0)),
 Toast.LENGTH_LONG).show();
 }
}

4.	 Finally, modify onClickClose in SecondActivity.java to set the return value
as follows:
public void onClickClose(View view) {
 Intent returnIntent = new Intent();
 returnIntent.putExtra(MainActivity.REQUEST_RESULT,42);
 setResult(RESULT_OK, returnIntent);
 finish();
}

How it works...
As you can see, getting the results back is relatively straightforward. We just call the
intent with startActivityForResult, so it knows that we want a result. We set up the
onActivityResult() callback handler to receive the results. Finally, we make sure that
the second activity returns a result with setResult() before closing the activity. In this
example, we are just setting a result with a static value. We just display what we receive to
demonstrate the concept.

Activities

14

It's good practice to check the result code to make sure that the user didn't cancel the
action. It's technically an integer, but the system uses it as a boolean value. Check for either
RESULT_OK or RESULT_CANCEL and proceed accordingly. In our example, the second activity
doesn't have a cancel button, so why bother to check? What if the user hits the back button?
The system will set the result code to RESULT_CANCEL and the intent to null, which will cause
our code to throw an exception.

We made use of the Toast object, which is a convenient pop-up message that can be used to
unobtrusively notify the user. It also functions as a handy method for debugging as it doesn't
need a special layout or screen space.

There's more...
Besides the result code, onActivityResults() also includes a Request Code. Are you
wondering where that came from? It is simply the integer value that was passed with the
startActivityForResult() call, which takes this form:

startActivityForResult(Intent intent, int requestCode);

We didn't check the request code because we knew we had only one result to handle—but
in trivial applications with several activities, this value can be used to identify where the
request originated.

If startActivityForResult() is called with a negative request code,
it will behave exactly as if it were a call to startActivity()—that is, it
will not return a result.

See also
ff To learn more about creating new activity classes, refer to the Switching between

activities recipe

ff For more information about Toasts, check out the Making a Toast recipe in Chapter 7,
Alerts and Notifications

Saving an activity's state
The mobile environment is very dynamic, with users changing tasks much more often than
on desktops. With generally fewer resources on a mobile device, it should be expected that
your application will be interrupted at some point. It's also very possible that the system will
shut down your app completely to give additional resources to the task at hand. It's the
nature of mobiles.

Chapter 1

15

A user might start typing something in your app, be interrupted by a phone call, or switch
over to another app to send a text message, and by the time they get back to your app, the
system may have closed it down completely to free up the memory. To provide the best user
experience, you need to expect such behavior and make it easier for your user to resume
from where they left off. The good thing is that the Android OS makes this easier by providing
callbacks to notify your app of state changes.

Simply rotating your device will cause the OS to destroy and recreate
your activity. This might seem a bit heavy-handed, but it's done for
good reason—it's very common to have different layouts for portrait and
landscape, so this ensures that your app is using the correct resources.

In this recipe, you'll see how to handle the onSaveInstanceState() and
onRestoreInstanceState() callbacks to save your application's state. We will
demonstrate this by creating a counter variable and increment it each time the Count
button is pressed. We will also have an EditText and a TextView widget to see their
default behavior.

Getting ready
Create a new project in Android Studio and name it StateSaver. We need only a single
activity, so the autogenerated main activity is sufficient. However, we will need a few widgets,
including EditText, Button, and TextView. Their layout (in activity_main.xml) will
look like this:

<EditText
 android:id="@+id/editText"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentTop="true"
 android:layout_alignParentStart="true"/>

<Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerInParent="true"
 android:text="Count"
 android:onClick="onClickCounter"/>

<TextView
 android:id="@+id/textViewCounter"

Activities

16

 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/button"/>

How to do it...
Perform the following set of steps:

1.	 To keep track of the counter, we need to add a global variable to the project, along
with a key for saving and restoring. Add the following code to the MainActivity.
java class:
static final String KEY_COUNTER = "COUNTER";
private int mCounter=0;

2.	 Then add the code needed to handle the button press; it increments the counter and
displays the result in the TextView widget:
public void onClickCounter(View view) {
 mCounter++;
 ((TextView)findViewById(R.id.textViewCounter)).setText(
 "Counter: " + Integer.toString(mCounter));
}

3.	 To receive notifications of application state change, we need to add the
onSaveInstanceState() and onRestoreInstanceState() methods
to our application. Open MainActivity.java and add the following:
@Override
protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);
 outState.putInt(KEY_COUNTER,mCounter);
}

@Override
protected void onRestoreInstanceState(Bundle savedInstanceState) {
 super.onRestoreInstanceState(savedInstanceState);
 mCounter=savedInstanceState.getInt(KEY_COUNTER);
}

4.	 Run the program and try changing the orientation to see how it behaves (if you're
using the emulator, Ctrl + F11 will rotate the device).

Chapter 1

17

How it works...
All activities go through multiple states during their lifetime. By setting up callbacks to handle
the events, we can have our code save important information before the activity is destroyed.

Step 3 is where the actual saving and restoring occurs. The system sends a
Bundle (a data object that also uses name/value pairs) to the methods. We use
the onSaveInstanceState() callback to save the data and pull it out in the
onRestoreInstanceState() callback.

But wait! Did you try typing text in the EditText view before rotating the device? If so, you'd
have noticed that the text was also restored, but we don't have any code to handle that view.
By default, the system will automatically save the state, provided it has a unique ID (not all
views automatically have their state saved, such as the TextView, but we can manually save
it if we want).

Note that if you want Android to automatically save and restore the state of
a view, it must have a unique ID (specified with the android:id= attribute
in the layout). Beware; not all view types automatically save and restore the
state of a view.

There's more...
The onRestoreInstanceState() callback is not the only place where the state can be
restored. Look at the signature of onCreate():

onCreate(Bundle savedInstanceState)

Both methods receive the same Bundle instance named savedInstanceState. You
could move the restore code to the onCreate() method and it would work the same.
But one catch is that the savedInstanceState bundle will be null if there is no data,
such as during the initial creation of the activity. If you want to move the code from the
onRestoreInstanceState() callback, just check to make sure that the data is not
null, as follows:

if (savedInstanceState!=null) {
 mCounter = savedInstanceState.getInt(KEY_COUNTER);
}

See also
ff The Storing persistent activity data recipe will introduce persistent storage.

ff Take a look at Chapter 6, Working with Data, for more examples on Android activities.

ff The Understanding the activity lifecycle recipe explains the Android Activity Lifecycle.

Activities

18

Storing persistent activity data
Being able to store information about our activities on a temporary basis is very useful, but more
often than not, we will want our application to remember information across multiple sessions.

Android supports SQLite, but that could be a lot of overhead for simple data, such as the
user's name or a high score. Fortunately, Android also provides a lightweight option for these
scenarios, with SharedPreferences.

Getting ready
You can either use the project from the previous recipe or start a new project and call it
PersistentData (in a real-world application, you'll likely be doing both anyway). In the
previous recipe, we saved mCounter in the session state. In this recipe, we'll add a new
method to handle onPause() and save mCounter to SharedPreferences. We'll
restore the value in onCreate().

How to do it...
We have only two changes to make, and both are in MainActivity.java:

1.	 Add the following onPause() method to save the data before the activity closes:
@Override
protected void onPause() {
 super.onPause();

 SharedPreferences settings = getPreferences(
 MODE_PRIVATE);
 SharedPreferences.Editor editor = settings.edit();
 editor.putInt(KEY_COUNTER, mCounter);
 editor.commit();
}

2.	 Then add the following code at the end of onCreate() to restore the counter:
SharedPreferences settings = getPreferences(MODE_PRIVATE);

int defaultCounter = 0;
mCounter = settings.getInt(KEY_COUNTER, defaultCounter);

3.	 Run the program and try it out.

Chapter 1

19

How it works...
As you can see, this is very similar to saving state data, because it also uses name/
value pairs. Here, we just stored an int, but we can just as easily store one of the other
primitive data types. Each data type has equivalent getters and setters, for example,
SharedPreferences.getBoolean() or SharedPreferences.setString().

Saving our data requires the services of SharedPreferences.Editor. This is evoked
with edit() and accepts remove() and clear() procedures as well as setters such as
putInt(). Note that we must conclude any storing that we do here with the commit()
statement.

There's more...
There is a slightly more sophisticated variant of the getPreferences() accessor:
getSharedPreferences(). It can be used to store multiple preference sets.

Using more than one preference file
Using getSharedPreferences() is no different from using its counterpart, but it allows for
more than one preference file. It takes the following form:

getSharedPreferences(String name, int mode)

Here, name is the file. The mode can be either MODE_PRIVATE, MODE_WORLD_READABLE, or
MODE_WORLD_WRITABLE and describes the file's access levels.

See also
ff Chapter 6, Working with Data, for more examples on data storage

Understanding the activity lifecycle
The Android OS is a dangerous place for an activity. The demand for resources on a
battery-operated platform is managed quite ruthlessly by the system. Our activities can
be dumped from memory when it's running low, without even a moment's notice and along
with any data they contain. Therefore, it is essential to understand the activity lifecycle.

Activities

20

The following diagram shows the stages through which an activity passes during its lifetime:

User Navigates
Back to the

Activity

Activity Starts

onCreate()

onStart()

onResume()

Activity is
Running

Another Activity
Comes to

the Foreground

onPause()

Activity is no
longer visible

onStop()

onDestroy()

Activity is
Shut Down

onRestart()

Activity Returns
to the

Foreground

Activity Returns
to the

Foreground

Process
is Killed

Other
Applications

Need Memory

Along with the stages, the diagram also shows the methods that can be overridden. As you
can see, we've already utilized most of these methods in the preceding recipes. Hopefully,
getting the big picture will help in your understanding.

Chapter 1

21

Getting ready
Create a new project in Android Studio with a Blank Activity, and call it ActivityLifecycle.
We will use the (autogenerated) TextView method to display the state information.

How to do it...
To see the application move through the various stages, we will create methods for all
the stages:

1.	 Open activity_main.xml and add an ID to the autogenerated TextView:
android:id="@+id/textViewState"

2.	 The remaining steps will be in MainActivity.java. Add the following global
declaration:
private TextView mTextViewState;

3.	 Modify the onCreate() method to save TextView and set the initial text:
mTextViewState = (TextView)findViewById(R.id.textViewState);

mTextViewState.setText("onCreate()\n");

4.	 Add the following methods to handle the remaining events:
@Override
protected void onStart() {
 super.onStart();
 mTextViewState.append("onStart()\n");
}

@Override
protected void onResume() {
 super.onResume();
 mTextViewState.append("onResume()\n");
}

@Override
protected void onPause() {
 super.onPause();
 mTextViewState.append("onPause()\n");
}

@Override

Activities

22

protected void onStop() {
 super.onStop();
 mTextViewState.append("onStop()\n");
}

@Override
protected void onRestart() {
 super.onRestart();
 mTextViewState.append("onRestart()\n");
}

@Override
protected void onDestroy() {
 super.onDestroy();
 mTextViewState.append("onDestroy()\n");
}

5.	 Run the application and observe what happens when the activity is interrupted by
pressing the Back and Home keys. Try other actions, such as task switching, to see
how they impact your application.

How it works...
Our activity can exist in one of these three states: active, paused, or stopped. There is also
a fourth state, destroyed, but we can safely ignore it:

ff An activity is in the active state when its interface is available for the user. It
persists from onResume() until onPause(), which is brought about when another
activity comes to the foreground. If this new activity does not entirely obscure our
activity, then ours will remain in the paused state until the new activity is finished
or dismissed. It will then immediately call onResume() and continue.

ff When a newly started activity fills the screen or makes our activity invisible, then
our activity will enter the stopped state, and the resumption will always invoke
a call to onRestart().

ff When an activity is in either the paused or stopped state, the operating system
can (and will) remove it from the memory when the memory is low or when other
applications demand it.

Chapter 1

23

ff It is worth noting that we never actually see the results of the onDestroy() method,
as the activity is removed by this point. If you want to explore these methods further,
then it is well worth employing Activity.isFinishing() to see whether the activity
is really finishing before onDestroy() is executed, as seen in the following snippet:
@Override
 public void onPause() {
 super.onPause();
 mTextView.append("onPause()\n ");
 if (isFinishing()){
 mTextView.append(" ... finishing");
 }
}

When implementing these methods, always call the
superclass before doing any work.

There's more...

Shutting down an activity
To shut down an activity, directly call its finish() method, which in turn calls onDestroy().
To perform the same action from a child activity, use finishFromChild(Activity
child), where child is the calling subactivity.

It is often useful to know whether an activity is being shut down or merely paused, and the
isFinishing(boolean) method returns a value that indicates which of these two states
the activity is in.

25

2
Layouts

In this chapter, we will cover the following topics:

ff Defining and inflating a layout

ff Using RelativeLayout

ff Using LinearLayout

ff Creating tables – TableLayout and GridLayout

ff Using ListView, GridView, and Adapters

ff Changing layout properties during runtime

ff Optimizing layouts with the Hierarchy Viewer

Introduction
In Android, the User Interface is defined in a Layout. A layout can be declared in XML or
created dynamically in code. (It's recommended to declare the layout in XML rather than
in code to keep the presentation layer separate from the implementation layer.) A layout
can define an individual ListItem, a fragment, or even the entire Activity. Layout files are
stored in the /res/layout folder and referenced in code with the following identifier:
R.layout.<filename_without_extension>.

Android provides a useful variety of Layout classes that contain and organize individual
elements of an activity (such as buttons, checkboxes, and other Views). The ViewGroup object
is a container object that serves as the base class for Android's family of Layout classes. The
Views placed in a layout form a hierarchy, with the topmost layout being the parent.

Layouts

26

Android provides several built-in layout types designed for specific purposes, such as the
RelativeLayout, which allows Views to be positioned with respect to other elements. The
LinearLayout can stack Views or align them horizontally, depending on the orientation
specified. The TableLayout can be used for laying out a grid of Views. Within various
layouts, we can also justify Views with Gravity and provide proportional size with Weight
control. Layouts and ViewGroups can be nested within each other to create complex
configurations. Over a dozen different Layout objects are provided for managing widgets, lists,
tables, galleries, and other display formats, plus you can always derive from the base classes
to create your own custom layouts.

Defining and inflating a layout
When using the Android Studio wizard to create a new project, it automatically creates the
res/layout/activity_main.xml file (as shown in the following screenshot). It then
inflates the XML file in the onCreate() callback with setContentView(R.layout.
activity_main).

For this recipe, we will create two, slightly different layouts and switch between them with
a button.

Getting ready
Create a new project in Android Studio and call it InflateLayout. Once the project is
created, expand the res/layout folder so we can edit the activity_main.xml file.

Layouts

27

How to do it...
1.	 Edit the res/layout/activity_main.xml file so it includes a button as

defined here:
<Button
 android:id="@+id/buttonLeft"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Left Button"
 android:layout_centerVertical="true"
 android:layout_alignParentLeft="true"
 android:onClick="onClickLeft"/>

2.	 Now make a copy of activity_main.xml and call it activity_main2.xml.
Change the button so it matches the following:
<Button
 android:id="@+id/buttonRight"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Right Button"
 android:layout_centerVertical="true"
 android:layout_alignParentRight="true"
 android:onClick="onClickRight"/>

3.	 Open MainActivity.java and add the following two methods to handle the
button clicks:
public void onClickLeft(View view) {
 setContentView(R.layout.activity_main2);
}

public void onClickRight(View view) {
 setContentView(R.layout.activity_main);
}

4.	 Run this application on a device or emulator to see it in action.

How it works...
The key here is the call to setContentView(), which we have come across before in the
autogenerated onCreate() code. Just pass a layout ID to setContentView() and it
automatically inflates the layout.

Layouts

28

This code is meant to make the concept easy to understand but would be overkill for simply
changing the property of a Button (in this example, we could just change the alignment on
the button click). Inflating the layout is usually needed once, in the onCreate() method, but
there are times when you may want to manually inflate a layout, as we did here. (If you were
manually handling orientation changes, it would be a good example.)

There's more...
As well as identifying a layout using a resource ID, as we did here, setContentView()can
also take a View as an argument, for example:

findViewById(R.id.myView)
setContentView(myView);

See also
ff As mentioned previously, see the Fragment topic, in Chapter 5, Exploring Fragments,

AppWidgets, and the System UI, for the alternative method to change the screen layout

Using RelativeLayout
As mentioned in the Introduction, the RelativeLayout allows Views to be position-relative to
each other and the parent. RelativeLayout is particularly useful for reducing the number of
nested layouts, which is very important for reducing memory and processing requirements.

Getting ready
Create a new project and call it RelativeLayout. The default layout uses a
RelativeLayout, which we will use to align Views both horizontally and vertically.

How to do it...
1.	 Open the res/layout/activity_main.xml file and change it as follows:

<TextView
 android:id="@+id/textView1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Centered"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true" />
<TextView
 android:id="@+id/textView2"

Layouts

29

 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Below TextView1"
 android:layout_below="@+id/textView1"
 android:layout_toLeftOf="@id/textView1" />
<TextView
 android:id="@+id/textView3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Bottom Right"
 android:layout_alignParentBottom="true"
 android:layout_alignParentEnd="true" />

2.	 Run the code, or view the layout in the Design tab

How it works...
This is a very straightforward exercise but it demonstrates several of the RelativeLayout
options: layout_centerVertical, layout_centerHorizontal, layout_below,
layout_alignParentBottom, and so on.

The most commonly used RelativeLayout layout attributes include:

ff layout_below: This View should be below the View specified

ff layout_above: This View should be above the View specified

ff layout_alignParentTop: Align this View to the top edge of the parent

ff layout_alignParentBottom: Align this View to the bottom edge of the parent

ff layout_alignParentLeft: Align this View to the left edge of the parent

ff layout_alignParentRight: Align this View to the right edge of the parent

ff layout_centerVertical: Center this View vertically within the parent

ff layout_centerHorizontal: Center this View horizontally within the parent

ff layout_center: Center this View both horizontally and vertically within the parent

For the complete list of RelativeLayout parameters, visit:
http://developer.android.com/reference/android/
widget/RelativeLayout.LayoutParams.html.

Layouts

30

There's more...
In contrast to what we saw earlier, here is an example using a LinearLayout just to
center a TextView (creating the same effect as the layout_center parameter of
RelativeLayout):

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:gravity="center">
 <LinearLayout
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:gravity="center" >
 <TextView
 android:id="@+id/imageButton_speak"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Centered" />
 </LinearLayout>
</LinearLayout>

Notice this layout is one level deeper than the equivalent RelativeLayout (which is a
LinearLayout nested within the parent LinearLayout.) Though a simple example, it's
a good idea to avoid unnecessary nesting as it can impact performance, especially when a
layout is being repeatedly inflated (such as a ListItem).

See also
ff The next recipe, Using LinearLayout, which will give you an alternative layout

ff See the Optimizing layouts with the Hierarchy Viewer recipe for more information on
efficient layout design

Using LinearLayout
Another common layout option is the LinearLayout, which arranges the child Views in a
single column or single row, depending on the orientation specified. The default orientation
(if not specified) is vertical, which aligns the Views in a single column.

Layouts

31

The LinearLayout has a key feature not offered in the RelativeLayout—the weight
attribute. We can specify a layout_weight parameter when defining a View to allow the
View to dynamically size based on the available space. Options include having a View fill all
the remaining space (if a View has a higher weight), having multiple Views fit within the given
space (if all have the same weight), or spacing the Views proportionally by their weight.

We will create a LinearLayout with three EditText Views to demonstrate how the weight
attribute can be used. For this example, we will use three EditText Views—one to enter a
To Address parameter, another to enter a Subject, and the third to enter a Message.
The To and Subject Views will be a single line each, with the remaining space given to
the Message View.

Getting ready
Create a new project and call it LinearLayout. We will replace the default
RelativeLayout created in activity_main.xml with a LinearLayout.

How to do it...
1.	 Open the res/layout/activity_main.xml file and replace it as follows:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <EditText
 android:id="@+id/editTextTo"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="To" />
 <EditText
 android:id="@+id/editTextSubject"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="Subject" />
 <EditText
 android:id="@+id/editTextMessage"
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1"
 android:gravity="top"
 android:hint="Message" />
</LinearLayout>

2.	 Run the code, or view the layout in the Design tab.

Layouts

32

How it works...
When using vertical orientation with the LinearLayout, the child Views are created in a
single column (stacked on top of each other). The first two Views use the android:layout_
height="wrap_content" attribute, giving them a single line each. editTextMessage
uses the following to specify the height:

android:layout_height="0dp"
android:layout_weight="1"

When using the LinearLayout, it tells Android to calculate the height based on the weight. A
weight of 0 (the default if not specified) indicates the View should not expand. In this example,
editTextMessage is the only View defined with a weight, so it alone will expand to fill any
remaining space in the parent layout.

When using the horizontal orientation, specify android:layout_
height="0dp" (along with the weight) to have Android calculate the width.

It might be helpful to think of the weight attribute as a percentage. In this case, the total
weight defined is 1, so this View gets 100 percent of the remaining space. If we assigned a
weight of 1 to another View, the total would be 2, so this View would get 50 percent of the
space. Try adding a weight to one of the other Views (make sure to change the height to 0dp
as well) to see it in action.

If you added a weight to one (or both) of the other Views, did you notice the text position?
Without specifying a value for gravity, the text just remains in the center of the View space.
The editTextMessage specifies: android:gravity="top", which forces the text to the
top of the View.

There's more...
Multiple attribute options can be combined using bitwise OR. (Java uses the pipe character (|)
for OR). For example, we could combine two gravity options to both align along the top of the
parent and center within the available space:

android:layout_gravity="top|center"

It should be noted that the layout_gravity and gravity tags are not the same thing.
Where layout_gravity dictates where in its parent a View should lie, gravity controls
the positioning of the contents within a View—for example, the alignment of text on a button.

Layouts

33

See also
ff The previous recipe, Using the RelativeLayout

Creating tables – TableLayout and
GridLayout

When you need to create a table in your UI, Android provides two convenient layout options:
the TableLayout (along with TableRow) and the GridLayout (added in API 14). Both
layout options can create similar looking tables, but each using a different approach. With
the TableLayout, rows and columns are added dynamically as you build the table. With
the GridLayout, row and column sizes are defined in the layout definition.

Neither layout is better, it's just a matter of using the best layout for your needs. We'll create a
3 x 3 grid using each layout to give a comparison, as you could easily find yourself using both
layouts, even within the same application.

Getting ready
To stay focused on the layouts and offer an easier comparison, we will create two separate
applications for this recipe. Create two new Android projects, the first called TableLayout
and the other called GridLayout.

How to do it...
1.	 Starting with the TableLayout project, open activity_main.xml. Change the root

layout to TableLayout.

2.	 Add three TableRows with three sets of TextViews to each TableRow to create a
3 x 3 matrix. For demonstration purposes, the columns are labeled A-C and the rows
1-3, so the first row of TextViews will be A1, B1, and C1. The final result will look
like this:
<TableLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TableRow
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView

Layouts

34

 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="A1"
 android:id="@+id/textView1" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="B1"
 android:id="@+id/textView2" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="C1"
 android:id="@+id/textView3" />
 </TableRow>
 <TableRow
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="A2"
 android:id="@+id/textView4" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="B2"
 android:id="@+id/textView5" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="C2"
 android:id="@+id/textView6" />
 </TableRow>
 <TableRow
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="A3"
 android:id="@+id/textView7" />

Layouts

35

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="B3"
 android:id="@+id/textView8" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="C3"
 android:id="@+id/textView9" />
 </TableRow>
</TableLayout>

3.	 Now, open the GridLayout project to edit activity_main.xml. Change the root
layout to GridLayout. Add the columnCount=3 and rowCount=3 attributes to the
GridLayout element.

4.	 Now, add nine TextViews to GridLayout. We will use the same text as the
preceding TableLayout for a consistent comparison. Since the GridView does
not use TableRows, the first three TextViews are in Row 1, the next three are in
Row 2, and so on. The final result will look like this:
<GridLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:columnCount="3"
 android:rowCount="3">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="A1"
 android:id="@+id/textView1" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="B1"
 android:id="@+id/textView2" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="C1"
 android:id="@+id/textView3" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

Layouts

36

 android:text="A2"
 android:id="@+id/textView4" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="B2"
 android:id="@+id/textView5" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="C2"
 android:id="@+id/textView6" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="A3"
 android:id="@+id/textView7" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="B3"
 android:id="@+id/textView8" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="C3"
 android:id="@+id/textView9" />
</GridLayout>

5.	 You can either run the application or use the Design tab to see the results.

How it works...
As you can see when viewing the tables created, the tables basically look the same on screen.
The main difference is the code to create them.

In the TableLayout XML, each row is added to the table using a TableRow. Each
View becomes a column. This is not a requirement as cells can be skipped or left empty.
(See how to specify the cell location in a TableRow in the following section.)

The GridLayout uses the opposite approach. The number of rows and columns are specified
when creating the table. We don't have to specify the row or column information (though we
can, discussed as follows). Android will automatically add each View to the cells in order.

Layouts

37

There's more...
First, let's see more similarities between the layouts. Both layouts have the ability to stretch
columns to use the remaining screen space. For the TableLayout, add the following
attribute to the xml declaration:

android:stretchColumns="1"

stretchColumns specifies the (zero based) index of the columns to stretch.
(android:shrinkColumns is a zero-based index of columns that can shrink,
so the table can fit the screen.)

To achieve the same effect with the GridLayout, add the following attribute to all the Views
in the B column (textView2, textView5, and textView8):

android:layout_columnWeight="1"

All cells in a given column must define the weight or it will not stretch.

Now, let's look at some of the differences, as this is really the key to determine which layout to
use for a given task. The first thing to note is how the columns and rows are actually defined.
In the TableLayout, the rows are specifically defined, using a TableRow. (Android will
determine the number of columns in the table based on the row with the most cells.) Use
the android:layoutColumn attribute when defining the View to specify the column.

In contrast, with the GridLayout, the row and column counts are specified when defining the
table (using the columnCount and rowCount as shown previously.)

In the preceding example, we just added TextViews to the GridLayout and let the system
position them automatically. We can alter this behavior by specifying the row and column
position when defining the View, such as:

android:layout_row="2"
android:layout_column="2"

Android automatically increments the cell counter after adding each
View, so the next View should also specify the row and column,
otherwise, you may not get the intended result.

Like the LinearLayout shown in the LinearLayout recipe, the GridLayout also offers the
orientation attribute of supporting both horizontal (the default) and vertical. The orientation
determines how the cells are placed. (Horizontal fills the columns first, then moves down to
the next row. Vertical fills the first column on each row, then moves to the next column.)

Layouts

38

Using ListView, GridView, and Adapters
The ListView and GridView are both descendants of ViewGroup, but they are used more
like a View since they are data driven. In other words, rather than defining all the possible
Views that might fill a ListView (or GridView) at design time, the contents are created
dynamically from the data passed to the View. (The layout of the ListItem might be created
at design time to control the look of the data during runtime.)

As an example, if you needed to present a list of countries to a user, you could create a
LinearLayout and add a button for each country. There are several problems with this
approach: determining the countries available, keeping the list of buttons up to date, having
enough screen space to fit all the countries, and so on. Otherwise, you could create a list of
countries to populate a ListView, which will then create a button for each entry.

We will create an example, using the second approach, to populate a ListView from an array
of country names.

Getting ready
Create a new project in Android Studio and call it ListView. The default ActivityMain
class extends the Activity class. We will change it to extend the ListActivity class
instead. We will then create a simple string list and bind it to the ListView, to derivate
the buttons at runtime.

How to do it...
1.	 Open the MainActivity.java file and change the base declaration so it will extend

ListActivity instead of the Activity class:
public class MainActivity extends ListActivity {

2.	 Change onCreate() so it matches the following:
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 String[] countries = new String[]{"China", "France",
 "Germany", "India", "Russia", "United Kingdom",
 "United States"};

 ListAdapter countryAdapter = new
 ArrayAdapter<String>(this, android.R.layout.
 simple_list_item_1, countries);
 setListAdapter(countryAdapter);

Layouts

39

 getListView().setOnItemClickListener(
 new AdapterView.OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView<?> parent, View
 view, int position, long id) {
 String s = ((TextView) view).getText() + " " +
 position;
 Toast.makeText(getApplicationContext(), s,
 Toast.LENGTH_SHORT).show();
 }
 });
}

3.	 Now run the application on an emulator or device to see the populated ListView.

How it works...
We start by creating a simple array of country names, then use that to populate a
ListAdapter. In this example, we used an ArrayAdapter when constructing the
ListAdapter, but Android has several other adapter types available as well. Such as,
if your data is stored in a database, you could use the CursorAdapter. If one of the
built-in types doesn't meet your needs, you can always use the CustomAdapter.

We create the adapter with this line of code:

ListAdapter countryAdapter = new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1, countries);

Here, we instantiate the ArrayAdapter using our string array (the last parameter). Notice
the android.R.layout.simple_list_item_1 parameter? This defines the layout for
the button. Here, we are using one of the layouts as provided by Android, but we could create
our own layout and pass our ID instead.

Once we have the adapter ready, we just pass it to the underlying ListView with
the setListAdapter() call. (The underlying ListView comes from extending the
ListViewActivity.) Finally, we implement the setOnItemClickListener to display
a Toast when the user presses a button (which represents a country) in the list.

ListViews are very common in Android as they make efficient use of screen space with a
scrolling View, which can be very handy on small screens. The ScrollView layout offers an
alternative approach to create a similar scrolling effect. The main difference between the two
approaches is that the ScrollView layout is fully inflated before being shown to the user,
whereas the ListView only inflates the Views that will be visible. For limited data, this may
not be an issue, but for larger data sets, the application could run out of memory before the
list is even shown.

Layouts

40

Also, since the ListView is driven by a data adapter, the data can easily be changed.
Even in our limited example, adding a new country to the screen is as simple as adding the
name to the country list. More importantly, the list can be updated during runtime while
the user is using the app (for example, downloading an updated list from a website to show
real-time options).

There's more...
The ListView also supports a multiple selection mode using the setChoiceMode()
method. To see it in action, add the following line of code after setListAdapter():

getListView().setChoiceMode(ListView.CHOICE_MODE_MULTIPLE);

Then, change the ListItem layout from android.R.layout.simple_list_item_1
to android.R.layout.simple_list_item_checked.

While most applications requiring a scrolling list turn to the ListView, Android also offers
the GridView. They are very similar in functionality, even using the same data adapters.
The main difference is visual which allows multiple columns. For a better understanding,
let's change the ListView example to a GridView.

To start, we need to change MainActivity to extend from Activity again, instead of
ListActivity. (This will undo the preceding Step 1.) Then, replace onCreate() with
the following code:

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 GridView gridView = new GridView(this);
 setContentView(gridView);
 String[] countries = new String[]{"China", "France",
 "Germany", "India", "Russia", "United Kingdom",
 "United States"};
 ListAdapter countryAdapter = new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1, countries);
 gridView.setAdapter(countryAdapter);
 gridView.setNumColumns(2);
 gridView.setOnItemClickListener(new
 AdapterView.OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView<?> parent, View view,
 int position, long id) {
 String s = ((TextView) view).getText() + " " +
 position;
 Toast.makeText(getApplicationContext(), s,
 Toast.LENGTH_SHORT).show();
 }
 });
}

Layouts

41

As you can see, there's more setup code for the GridView than there was for the
ListView. The onCreate() method creates a new GridView and passes it in the
setContentView() call. (We used this variation of setContentView, as was mentioned in
Defining and inflating a layout, instead of creating a layout with just a GridView, but the end
result is the same.)

The ListViewActivity base class handles much of this, but the GridView does not have
a corresponding activity class to extend.

Changing layout properties during runtime
In Android development, it's generally the preferred practice to define the UI with XML and the
application code in Java, keeping the User Interface code separate from the application code.
There are times where it is much easier or more efficient, to alter (or even build) the UI from
the Java code. Fortunately, this is easily supported in Android.

We saw a small example of modifying the layout from code in the previous recipe, where we
set the number of GridView column to display in the code. In this recipe, we will obtain a
reference to the LayoutParams object to change the margin during runtime.

Getting ready
Here we will set up a simple layout with XML and use a LinearLayout.LayoutParams
object to change the margins of a View during runtime.

How to do it....
1.	 Open the activity_main.xml file and change the layout from RelativeLayout

to LinearLayout. It will look as follows:
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
</LinearLayout>

2.	 Add a TextView and include an ID as follows:
android:id="@+id/textView"

3.	 Add Button and include an ID as follows:
android:id="@+id/button"

Layouts

42

4.	 Open MainActivity.java and add the following code to the onCreate() method
to set up an onClick event listener:
Button button = (Button)findViewById(R.id.button);
button.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 ((TextView)findViewById(
 R.id.textView)).setText("Changed at runtime!");
 LinearLayout.LayoutParams params = (LinearLayout.
 LayoutParams)view.getLayoutParams();
 params.leftMargin += 5;
 }
});

5.	 Run the program on a device or emulator.

How it works...
Every View (and therefore ViewGroup) has a set of layout parameters associated with it. In
particular, all Views have parameters to inform their parent of their desired height and width.
These are defined with the layout_height and layout_width parameters. We can access
this layout information from the code with the getLayoutParams() method. The layout
information includes the layout height, width, margins, and any class-specific parameters.
In this example, we moved the button on each click by obtaining the button LayoutParams
and changing the margin.

Optimizing layouts with the Hierarchy
Viewer

Before you can start optimizing your layouts, it helps to understand the Android layout
process. Inflating a layout, begins when the activity first comes into display. Three steps occur:

ff Measure: This is where the Views determine their size, starting with the parent and
working through all the children. The parent may have to call its children multiple
times to work out the final size.

ff Layout: This is where the parent determines the position of its children

ff Draw: This is where the Views are actually rendered

This process starts with the parent, which then iterates through all its children. Those children
iterate through their children. This creates the Layout Tree, with the parent becoming the root
node in the tree.

Layouts

43

Hierarchy Viewer is a tool included with the Android SDK for inspecting layouts. It graphically
shows the Layout Tree along with timing results for each view/node. By examining the tree
layout and the timing; you can look for inefficient design and bottlenecks. Armed with this
information, you're in position to optimize your layouts.

For this recipe, we will use Hierarchy Viewer to inspect the example layout given in the Using
RelativeLayout recipe.

Getting ready
In the There's more… section of the Using RelativeLayout recipe, a LinearLayout example
was shown to highlight the difference between the layouts. The comment was made stating
the LinearLayout required a nested layout. We're going to create a new project called
OptimizingLayouts using the example LinearLayout. We will then use Hierarchy Viewer
to inspect the layout. We will need a rooted Android device or the emulator for this Recipe.

Hierarchy Viewer will only connect to rooted devices, such as an emulator.

How to do it...
1.	 Open the OptimizingLayouts project in Android Studio. Run the project on your

rooted device (or emulator) and make sure the screen is visible (unlock if needed).

2.	 In Android Studio, start the Android Device Monitor by going to the following menu
option: Tools | Android | Android Device Monitor.

3.	 In Android Device Monitor, change to the Hierarchy View perspective, by going to
Window | Open Perspective… this will bring up the following dialog:

4.	 Now click on Hierarchy Viewer and on OK.

Layouts

44

5.	 In the Windows section on the left is the list of devices with the running processes.
Click on the OptimizingLayouts process to inspect the layout.

6.	 See the graphical representation of this activity in the TreeView section (in the center
pane, which occupies most of the Hierarch Viewer perspective).

How it works...
The Tree Layout section shows a graphical hierarchy of the Views that comprise this layout,
along with the layout times. (Unfortunately for this demonstration, the render times are
too fast for visual color-coding references.) What's important for this example is the nested
LinearLayouts as shown previously. (It's worth taking some time to explore the other Views
that make up this layout so you can see what Android is doing for us behind the scenes.)

Layouts

45

As already mentioned in the RelativeLayout example, the solution is to redesign this
layout using the RelativeLayout. Ideally, we want a wider, flatter layout, rather than
deeply nested layouts to reduce the number of iterations required during the sizing step.
For timing purposes, this is obviously a trivial example, but even this example can have an
impact. Imagine the user flicking through a ListView with thousands of items based on this
inefficient layout. If you experience stuttering while scrolling, your optimizing steps could start
by examining the layout in Hierarchy Viewer.

There's more...
Lint is another tool included with the Android SDK with built-in support by Android Studio. By
default, you're already using Lint to check your code for issues such as deprecated API calls,
unsupported API calls for the target API level, security issues, and so on. For our Optimizing
Layout concerns, some of the conditions that Lint will automatically check include the following:

ff Deep layouts — the default maximum is 10 levels

ff Nested weights, which are bad for performance

ff Useless parent

ff Useless leaf

If you check the Lint warning in Android Studio for this layout, you will see the following
warning on the second LinearLayout element:

Layouts

46

The ViewStub can also be used to optimize a layout. Think of the ViewStub as a "lazy load"
for your layout. The layout in the ViewStub will not inflate until it's needed, which reduces the
Views needed to inflate. The layout will render faster and use less memory. This is a great way
to have functionality that is seldom used, such as a Print feature, available when needed,
but that does not take up memory when not needed. Here's an example of a ViewStub:

<ViewStub
 android:id="@+id/viewStubPrint"
 android:inflatedId="@id/print"
 android:layout="@layout/print"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>

There are two ways to actually inflate the ViewStub:

ff Set the visibility parameter of ViewStub to VISIBLE:
((ViewStub) findViewById(R.id.viewStubPrint)).
 setVisibility(View.VISIBLE);

ff Call the inflate() method on the ViewStub:
View view = ((ViewStub) findViewById(
 R.id.viewStubPrint)).inflate();

Once the ViewStub is inflated, the ViewStub ID will be removed from the layout and
replaced with the inflated ID.

Chapter 3

47

3
Views, Widgets,

and Styles

In this chapter, we will cover the following topics:

ff Inserting a widget into a layout

ff Using graphics to show the button state

ff Creating a widget at runtime

ff Creating a custom component

ff Applying a style to a View

ff Turning a style into a theme

ff Selecting a theme based on the Android OS version

Introduction
The term widgets can refer to several different concepts in Android. When most people talk
about widgets, they are referring to app widgets, which are typically seen on the home screen.
App widgets are like mini applications by themselves as they usually provide a subset of
functionality, based on their main application. (Usually, most app widgets are installed along
with an application, but that is not a requirement. They can be standalone apps in a widget
format.) A common app widget example is a weather application that offers several different
app widgets for the home screen. Chapter 5, Exploring Fragments, AppWidgets, and the
System UI, will discuss home screen app widgets and provide recipes to create your own.

When developing for Android, the term widgets generally refers to specialized Views placed in
the layout files, such as a Button, TextView, CheckBox, and so on. In this chapter, we will focus
on widgets for app development.

Views, Widgets, and Styles

48

To see the list of widgets provided in the Android SDK, open a layout file in Android Studio,
and click on the Design tab. Along the left side of the Design view, you will see the Widget
section below the Layout section, as in the following screenshot:

As you can see from the list, the Android SDK provides many useful widgets—from a simple
TextView, Button, or Checkbox to the much more complex widgets such as the Clock,
DatePicker, and Calendar. As useful as the built-in widgets are, it's also very easy to expand on
what's provided in the SDK. We can extend an existing widget to customize its functionality, or
we can create our own widget from scratch by extending the base View class. (We will provide
an example of this in the Creating a custom component recipe later.)

The visual look of widgets can also be customized. These settings can be used to create
styles, which in turn can be used to create themes. Just like with other development
environments, creating a theme offers the benefit of easily changing the appearance
throughout our entire application with minimal effort. Lastly, the Android SDK also provides
many built-in themes and variations, such as the Holo theme from Android 3/4 and the
Material theme from Android 5. (Android 6.0 did not release a new theme.)

Chapter 3

49

Inserting a widget into a layout
As you may have seen from previous recipes, widgets are declared in a layout file, or created
in code. For this recipe, we will go step-by-step to add a button with the Android Studio
Designer. (For later recipes, we will just show the layout XML from the TextView.) After
creating the button, we will create an onClickListener().

Getting ready
Start a new project in Android Studio and call it InsertWidget. Use the default options for
creating a Phone and Tablet project and select Empty Activity when prompted for the Activity
Type. You can delete the default TextView (or leave it) as it will not be needed for this recipe.

How to do it...
To insert a widget into a layout, follow these steps:

1.	 Open the activity_main.xml file in Android Studio and click on the Design tab.

Views, Widgets, and Styles

50

2.	 Find Button in the widget list and drag it to the center of the activity screen on the
right. Android will automatically set the layout parameters based on where the button
is dropped. If you center the button as shown in the screenshot, Android Studio will
set those parameters in the XML.

3.	 To view the xml created, click on the Text tab as shown in the following screenshot.
See how the button is centered using the RelativeLayout parameters. Also, take
note of the default ID as we will need it for the next step.

Chapter 3

51

4.	 Now, open the MainActivity.java file to edit the code. Add the following code
to the onCreate() method to set up the onClickListener():
Button button = (Button)findViewById(R.id.button);
button.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 Toast.makeText(MainActivity.this,"Clicked",
 Toast.LENGTH_SHORT).show();
 }
});

5.	 Run the application on a device or emulator.

How it works...
Creating the UI with the Android Studio is as simple as dragging and dropping Views. You can
also edit the properties of the Views directly in the Design tab. Switching to the XML code is
as simple as hitting the Text tab.

What we did here is very common in Android development—creating the UI in XML, then
hooking up the UI components (Views) in the Java code. To reference a View from code,
it must have a resource identifier associated with it. This is done using the id parameter:

android:id="@+id/button"

Our onClickListener function displays a pop-up message on the screen called Toast,
when the button is pressed.

Views, Widgets, and Styles

52

There's more...
Take a look again at the format of the identifier we created previously, @+id/button. The @
specifies this is going to be a resource and the + sign indicates a new resource. (If we failed
to include the plus sign, we would get a compile time error stating No resource matched the
indicated name).

See also
ff Butter Knife (Open Source Project)—Field and method binding for Android Views:

http://jakewharton.github.io/butterknife/

Using graphics to show button state
We've talked about the versatility of Android Views and how behavior and visual appearance
can be customized. In this recipe, we will create a drawable state selector, which is a
resource defined in XML that specifies the drawable to use based on the View's state.
The most commonly used states, along with the possible values, include:

ff state_pressed=["true" | "false"]

ff state_focused=["true" | "false"]

ff state_selected=["true" | "false"]

ff state_checked=["true" | "false"]

ff state_enabled=["true" | "false"]

To define a state selector, create an XML file with the <selector> element, as shown:

<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android" >
</selector>

Within the <selector> element, we define an <item> to identify the drawable to be used
based on the specified state(s). Here's an example <item> element using multiple states:

<item
 android:drawable="@android:color/darker_gray"
 android:state_checked="true"
 android:state_selected="false"/>

It's important to remember the file is read from top to bottom so the first
item that meets the state requirements will be used. A default drawable,
one with no states included, would need to go last.

Chapter 3

53

For this recipe, we will use a state selector to change the background color based on the
ToggleButton state.

Getting ready
Create a new project in Android Studio and call it StateSelector using the default Phone &
Tablet options. When prompted for the Activity Type, select Empty Activity. To make it easier to
type the code for this recipe, we will use a color as the graphic to represent the button state.

How to do it...
We will start by creating the state selector, which is a resource file defined with XML code. We
will then set up the button to use our new state selector. Here are the steps:

1.	 Create a new XML file in the res/drawable folder and call it: state_selector.
xml. The file should consist of the following XML code:
<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/
android">
 <item
 android:drawable="@android:color/darker_gray"
 android:state_checked="true"/>
 <item
 android:drawable="@android:color/white"
 android:state_checked="false"/>
</selector>

2.	 Now open the activity_main.xml file and drop in a ToggleButton as follows:
<ToggleButton
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="New ToggleButton"
 android:id="@+id/toggleButton"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true"
 android:background="@drawable/state_selector" />

3.	 Run the application on a device or emulator.

Views, Widgets, and Styles

54

How it works...
The main concept to understand here is the Android State Selector. As shown in Step 2,
we created a resource file which specified a drawable (a color in this case) based on
state_checked.

Android supports many other state conditions besides checked. While typing in
android:state, look at the autocomplete dropdown to see the list of other options.

Once we have the drawable resource created (the XML from step 1), we just have to tell the
view to use it. Since we wanted the background color to change based on the state, we use
the android:background property.

state_selector.xml is a drawable resource that can be passed to any property that
accepts a drawable. We could, for example, replace the button in a checkbox with the
following XML:

android:button="@drawable/state_selector"

There's more...
What if we wanted actual images for the graphics instead of just a color change? This is as
easy as changing the drawable referenced in the item state.

The source code available for download uses two graphic images, downloaded from:
https://pixabay.com/ (this was chosen because the images are free to use and
didn't require a login.)

Once you have your desired images, place them in the res/drawable folder. Then, change
the state item line in the XML to reference your images. Here's an example:

<item
 android:drawable="@drawable/checked_on"
 android:state_checked="true"/>

(Change check_on to match your image resource name.)

Using designated folders for screen-specific resources
When Android encounters a @drawable reference, it expects to find the target in one of the
res/drawable folders. These are designed for different screen densities: ldpi (low dots
per inch), mdpi (medium), hdpi (high), and xhdpi (extra-high) and they allow us to create
resources for specific target devices. When an application is running on a specific device,
Android will load resources from the designated folder that most closely matches the actual
screen density.

Chapter 3

55

If it finds this folder empty, it will try the next nearest match and so on until it finds the
named resource. For tutorial purposes, a separate set of files for each possible density is
not required, and so placing our images in the drawable folder is a simple way to run the
exercise on any device.

For a complete list of resource identifiers available, visit
http://developer.android.com/guide/topics/
resources/providing-resources.html.

See also
For another example on Android resource selection, see the recipe on Selecting theme based
on the OS version later.

Creating a widget at runtime
As mentioned before, generally, the UI is declared in XML files and then modified during
runtime through the Java code. It is possible to create the UI completely in Java code,
though for a complex layout, it would generally not be considered best practice.

The GridView example from the previous chapter was created in code. But unlike the
GridView recipe, in this recipe, we are going to add a view to the existing layout defined in
activity_main.xml.

Getting ready
Create a new project in Android Studio and call it RuntimeWidget. Select the Empty Activity
option when prompted for the Activity type.

How to do it...
We will start by adding an ID attribute to the existing layout so we can access the layout in
code. Once we have a reference to the layout in code, we can add new views to the existing
layout. Here are the steps:

1.	 Open the res/layout/activity_main.xml and add an ID attribute to the main
RelativeLayout, as follows:
android:id="@+id/layout"

2.	 Completely remove the default <TextView> element.

Views, Widgets, and Styles

56

3.	 Open the MainActivity.java file so we can add code to the onCreate()
method. Add the following code (after setContentView()) to get a reference
to the RelativeLayout:
RelativeLayout layout = (RelativeLayout)findViewById(R.id.layout);

4.	 Create a DatePicker and add it to the layout with the following code:
DatePicker datePicker = new DatePicker(this);
layout.addView(datePicker);

5.	 Run the program on a device or emulator.

How it works...
This is hopefully very straightforward code. First, we get a reference to the parent layout
using findViewById. We added the ID to the existing RelativeLayout (in step 1) to make
it easier to reference. We create a DatePicker in code and add it to the layout with the
addView() method.

There's more...
What if we wanted to create the entire layout from code? Though it may not be considered
best practice, there are times when it is certainly easier (and less complex) to create a
layout from code. Let's see how this example would look if we didn't use the layout from
activity_main.xml. Here's how the onCreate() would look:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 RelativeLayout layout = new RelativeLayout(this);
 DatePicker datePicker = new DatePicker(this);
 layout.addView(datePicker);
 setContentView(layout);
}

In this example, it's really not that different. If you create a view in code and want to reference
it later, you either need to keep a reference to the object, or assign the view an ID to use
findViewByID(). To give a view an ID, use the setID() method by passing in View.
generateViewId() (to generate a unique ID) or define the ID using <resources> in xml.

Chapter 3

57

Creating a custom component
As we have seen in previous recipes, the Android SDK provides a wide range of components.
But what happens when you can't find a prebuilt component that fits your unique needs? You
can always create your own!

In this recipe, we will walk through creating a custom component that derives from the View
class, just like the built-in widgets. Here's a high-level overview:

1.	 Create a new class that extends View.

2.	 Create custom constructor(s).

3.	 Override onMeasure(), and the default implementation returns a size of 100 x 100.

4.	 Override onDraw(), and the default implementation draws nothing.

5.	 Define custom methods and listeners (such as on<Event>()).

6.	 Implement custom functionality.

While overriding onMeasure() and onDraw() is not strictly
required, the default behavior is likely not what you would want.

Getting ready
Start a new project in Android Studio and call it CustomView. Use the default wizard options,
including the Phone & Tablet SDK and select Empty Activity when prompted for the Activity
type. Once the project files are created and open in Android Studio, you are ready to begin.

How to do it...
We will create a new class for our custom component to derive from the Android View class.
Our custom component could be a subclass of an existing class, such as the Activity, but we
will create it in a separate file to make it easier to maintain. Here are the steps:

1.	 Start by creating a new Java class and also call it CustomView. This is where we will
implement our custom component, as described in the introduction.

2.	 Change the class constructor so it extends View. It should look as follows:
public class CustomView extends View {

3.	 Define a Paint object for the class, which will be used in the onDraw():
final Paint mPaint = new Paint();

Views, Widgets, and Styles

58

4.	 Create a default constructor, which requires the activity Context, so we can inflate
the view. We will set the paint properties here as well. The constructor should look
as follows:
public CustomView(Context context) {
 super(context);
 mPaint.setColor(Color.BLACK);
 mPaint.setTextSize(30);
}

5.	 Override the onDraw() method as follows:
@Override
protected void onDraw(Canvas canvas) {
 super.onDraw(canvas);
 setBackgroundColor(Color.CYAN);
 canvas.drawText("Custom Text", 100, 100, mPaint);
 invalidate();
}

6.	 Finally, inflate our custom view in MainActivity.java by replacing the
setContentView() with our view, as shown:
setContentView(new CustomView(this));

7.	 Run the application on a device or emulator to see it in action.

How it works...
We start by extending the View class, just as the built-in components do. Next, we create the
default constructor. This is important as we need the context to pass down to the super class,
which we do with the call:

super(context);

We need to override onDraw(), otherwise, as mentioned in the introduction, our custom view
won't display anything. When onDraw() is called, the system passes in a Canvas object. The
canvas is the area of the screen for our view. (Since we didn't override onMeasure(), our
view would be 100 x 100, but since our entire activity consists of just this view, we get the
whole screen as our canvas.)

We created the Paint object at the class level, and as final, to be more efficient with
memory allocation. (onDraw() should be as efficient as possible since it can be called
multiple times per second.) As you see from running the program, our onDraw() implementation
just sets the background color to cyan and prints text to the screen (using drawText()).

Chapter 3

59

There's more...
Actually, there's a lot more. We've just touched the surface of what you can do with a custom
component. Fortunately, as you see from this example, it doesn't take a lot of code to get
basic functionality. We could easily spend an entire chapter on topics such as passing layout
parameters to the view, adding listener callbacks, overriding onMeasure(), using our view in
the IDE, and so on. These are all features you can add as your needs dictate.

While a custom component should be able to handle any solution, there are other options that
might require less coding. Extending an existing widget is often sufficient without the overhead
of a custom component from scratch. If what you need is a solution with multiple widgets,
there's also the compound control. A compound control, such as a combo box, is just two or
more controls grouped together as a single widget.

A compound control would generally extend from a layout, not a View, since you will be adding
multiple widgets. You probably wouldn't need to override onDraw() and onMeasure(), as each
widget would handle the drawing in their respective methods.

See also
ff For more information on drawing, look at Chapter 9, Graphics and Animation.

For full details on the View object, refer to the Android Developer resource at:
http://developer.android.com/reference/android/view/View.html

Applying a style to a View
A style is a collection of property settings to define the look of a View. As you have already
seen while defining layouts, a view offers many settings to determine how it looks, as well as
functions. We have already set a view height, width, background color, and padding, plus there
are many more settings such as text color, font, text size, margin, and so on. Creating a style is
as simple as pulling these settings from the layout and putting them in a style resource.

In this recipe, we will go through the steps of creating a style and hooking it up to a view.

Similar to Cascading Style Sheets, Android Styles allow you to specify your design settings
separate from the UI code.

Getting ready
Create a new Android Studio project and call it Styles. Use the default wizard options to
create a Phone & Tablet project and select Empty Activity when prompted for the Activity. By
default, the wizard also creates a styles.xml file, which we will use for this recipe.

Views, Widgets, and Styles

60

How to do it...
We will create our own style resource to change the appearance of a TextView. We
can add our new style to the styles.xml resource created by Android Studio using the
following steps:

1.	 Open the default styles.xml file located in res/values, as shown here:

2.	 We will create a new style called MyStyle by adding the following XML below the
existing AppTheme style:
<style name="MyStyle">
 <item name="android:layout_width">match_parent</item>
 <item name="android:layout_height">wrap_content</item>
 <item name="android:background">#000000</item>
 <item name="android:textColor">#AF0000</item>
 <item name="android:textSize">20sp</item>
 <item name="android:padding">8dp</item>
 <item name="android:gravity">center</item>
</style>

3.	 Now tell the view to use this style. Open the activity_main.xml file and add the
following attribute to the existing <TextView> element:
style="@style/MyStyle"

4.	 Either run the application or view the results in the Design tab.

Chapter 3

61

How it works...
A style is a resource, defined by using the <style> element nested in a <resources>
element of an xml file. We used the existing styles.xml file, but that is not a requirement,
as we can use whatever filename we want. As seen in this recipe, multiple <style>
elements can be included in one xml file.

Once the style is created, you can easily apply it to any number of other views as well. What if
you wanted to have a button with the same style? Just drop a button in the layout and assign
the same style.

What if we created a new button, but wanted the button to expand the full width of the view?
How do we override the style for just that view? Simple, specify the attribute in the layout as
you've always done. The local attribute will take priority over the attribute in the style.

There's more...
There is another feature of styles: inheritance. By specifying a parent when defining the style,
we can have styles build on each other, creating a hierarchy of styles. If you look at the default
style in styles.xml: AppTheme, you will see the following line:

<style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">

AppTheme inherits from a theme defined in the Android SDK.

If you want to inherit from a style you have created yourself, there is a
shortcut method. Instead of using the parent attribute, you can specify the
parent name first, followed by a period, then the new name, such as:
<style name="MyParent.MyStyle" >

You saw how to specify a style for a view, but what if we wanted all the TextViews in our
application to use a specific style? We'd have to go back to each TextView and specify
the style. But there's another way. We can include a textViewStyle item in a style to
automatically assign a style to all TextViews. (There's a style for each of the widget types
so you can do this for Buttons, ToggleButtons, TextViews, and so on.)

To set the style for all TextViews, add the following line to the AppTheme style:

<item name="android:textViewStyle">@style/MyStyle</item>

Since the theme for our application already uses AppThem, we only have to add that single
line to AppTheme to have all our TextViews styled with our custom MyStyle.

Views, Widgets, and Styles

62

See also
The Android Design Support Library at:

http://android-developers.blogspot.de/2015/05/android-design-support-
library.html

Turning a style into a theme
A theme is a style applied to an Activity or the whole application. To set a theme, use the
android:theme attribute in the AndroidManifest.xml file. The theme attribute applies
to the <Application> element as well as the <Activity> elements. All views within that
element will be styled with the theme specified.

It's common to set the Application theme, but then override a specific Activity with a
different theme.

In the previous recipe, we set the textViewStyle using the AppTheme style (which the
wizard created automatically.) In this recipe, you will learn how to set both the Application
and Activity themes.

Along with the style settings we have already explored, there are additional style options
we didn't discuss because they don't apply to a View, they apply to the window as a whole.
Settings such as hiding the application title or Action Bar and setting the window background,
just to name a few, apply to the window and therefore must be set as a theme.

For this recipe, we are going to create a new theme based on the auto-generated AppTheme.
Our new theme will modify the window appearance to make it a dialog. We will also look at
the theme settings in the AndroidManifest.xml.

Getting ready
Start a new project in Android Studio and call it Themes. Use the default wizard options and
select the Empty Activity when prompted for the Activity type.

How to do it...
We start by adding a new theme to the existing styles.xml file to make our activity look like
a dialog. Here are the steps to create the new theme and set activity to use the new theme:

1.	 Since themes are defined in the same resource as styles, open the styles.xml file
located in res/values and create a new style. We will create a new style based on the
AppTheme already provided, and set windowIsFloating. The XML will be as follows:
<style name="AppTheme.MyDialog">
 <item name="android:windowIsFloating">true</item>
</style>

Chapter 3

63

2.	 Next, set the Activity to use this new dialog theme. Open the AndroidManifest.
xml file and add a theme attribute to the Activity element, as shown:
<activity android:name=".MainActivity"
 android:theme="@style/AppTheme.MyDialog">

Note that both Application and Activity will now have a theme specified.

3.	 Now run the application on a device or emulator to see the dialog theme in action.

How it works...
Our new theme MyDialog inherits the base AppTheme using the alternative parent
declaration, since AppTheme is defined in our code (and not a system theme). As mentioned
in the introduction, some settings apply to the window as a whole, which is what we see with
the windowIsFloating setting. Once our new theme is declared, we assign our theme to
the activity in the AndroidManifest file.

There's more...
You might have noticed we could have just added the windowIsFloating to the existing
AppTheme and been done. Since this application only has one Activity, the end result would
be the same, but then, any new activities would also appear as a dialog.

Selecting theme based on the Android
version

Most users prefer to see apps using the latest themes provided by Android. Now supports
Material Theme is common for apps upgrading to Android Lollipop. To be competitive with
the many other apps in the market, you'll probably want to upgrade your app as well, but what
about your users who are still running older versions of Android? By setting up our resources
properly, we can use resource selection in Android to automatically define the parent theme
based on the Android OS version the user is running.

First, let's explore the three main themes available in Android:

ff Theme – Gingerbread and earlier

ff Theme.Holo – Honeycomb (API 11)

ff Theme.Material – Lollipop (API 21)

(As of writing this, there does not appear to be a new theme in Android 6.0.)

This recipe will show how to properly set up the resource directories for Android to use the
most appropriate theme based on the API version the app is running on.

Views, Widgets, and Styles

64

Getting ready
Start a new project in Android Studio and call it AutomaticThemeSelector. Use the default
wizard option to make a Phone & Tablet project. Select the Empty Activity when prompted for
the Activity Type.

How to do it...
Depending on the API version selected, Android Studio may use the App Compatability
libraries. We don't want to use these libraries for this project since we want to explicitly set
which theme to use. We will start by making sure we are extending from the generic Activity
class, then we can add our new style resources to select the theme based on the API. Here
are the steps:

1.	 We need to make sure MainActivity extends from Activity and not
AppCompatActivity. Open ActivityMain.java and if necessary, change it
to read as follows:
public class MainActivity extends Activity {

2.	 Open activity_main.xml and drop in two views: a Button and a Checkbox.

3.	 Open styles.xml and remove AppTheme as it will not be used. Add our new
theme so the file reads as follows:
<resources>
 <style name="AutomaticTheme" parent="android:Theme.Light">
 </style>
</resources>

4.	 We need to create two new values folders for API 11 and 21. To do this, we need
to change Android Studio to use the Project view rather than the Android view.
(Otherwise, we won't see the new folders in the next step.) At the top of the Project
window, it shows Android, change this to Project for the Project View. See the
following screenshot:

Chapter 3

65

5.	 Create a new directory by right-clicking on the res folder and navigating to New |
Directory, as shown in this screenshot:

Views, Widgets, and Styles

66

Use the following name for the first directory: values-v11

Repeat this for the second directory using values-v21

6.	 Now create a styles.xml file in each of the new directories. (Right-click on the
values-v11 directory and go to the New | File option.) For values-v11, use
the following style to define the Holo theme:
<resources>
 <style name="AutomaticTheme"
 parent="android:Theme.Holo.Light">
 </style>
</resources>
For the values-v21, use the following code to define the Material
theme:
<resources>
 <style name="AutomaticTheme"
 parent="android:Theme.Material.Light">
 </style>
</resources>

7.	 The last step is to tell the application to use our new theme. To do this, open
AndroidManifest.xml and change the android:theme attribute to
AutomaticTheme. It should read as follows:
android:theme="@style/AutomaticTheme"

8.	 Now run the application on a physical device or emulator. If you want to see the three
different themes, you will need to have a device or emulator running the different
versions of Android.

How it works...
In this recipe, we are using the Android resource selection process to assign the appropriate
theme (which is a resource) based on the API version. Since we need to choose the theme
based on the OS version in which it was released, we created two new values folders
specifying the API version. This gives us a total of three styles.xml files: the default
style, one in the values-v11 directory, and the last in the values-v21 directory.

Notice the same theme name is defined in all three styles.xml files. This is how the
resource selection works. Android will use the resource from the directory that best fits
our values. Here we are using the API level, but other criteria are available as well. It is very
common to define separate resources based on other criteria, such as screen size, screen
density, and even orientation.

The last step was to specify our new theme as the application theme, which we did in the
Android Manifest.

Chapter 3

67

There's more…
For more information on resource selection, see the Using designated folders for
screen-specific resources topic in the previous recipe, Using graphics to show button state.

69

4
Menus

In this chapter, we will cover the following topics:

ff Creating an Options menu

ff Modifying menus and menu items during runtime

ff Enabling Contextual Action Mode for a view

ff Using Contextual Batch Mode with a ListView

ff Creating a pop-up menu

Introduction
The Android OS is an ever-changing environment. The earliest Android devices (prior to
Android 3.0), were required to have a hardware menu button. Though a hardware button
is no longer required, menus are no less important. In fact, the Menu API has expanded
to now support three different types of menus:

ff Options Menu and Action Bar: This is the standard menu, which is used for global
options of your application. Use this for additional features such as search, settings,
and so on.

ff Contextual Mode (Contextual Action Mode): This is generally activated by long
press. (Think of this as similar to a right-click on the desktop.) This is used to take
an action on the pressed item, such as replying to an e-mail or deleting a file.

ff Pop-up Menu: This provides a pop-up selection (like a spinner) for an additional
action. The menu options are not meant to affect the item pressed, instead use
Contextual Mode as described previously. An example would be hitting the share
button and getting an additional list of share options.

Menus

70

Menu resources are similar to other Android UI components; they are generally created in
XML, but can be created in code as well. Our first recipe, as shown in the following section,
will show the XML menu format and how to inflate it.

Creating an Options menu
Before we actually create and display a menu, let's look at a menu to see the end result. The
following is a screenshot showing the menu section of Chrome:

The most obvious feature to note is that the menu will look different based on the screen size.
By default, menu items will be added to the Overflow menu—that's the menu you see when
you press the three dots at the far right edge.

Menus are typically created in resource files using XML (like many other Android resources)
but they are stored in the res/menu directory though they can also be created in code. To
create a menu resource, use the <menu> element as shown:

<menu xmlns:android="http://schemas.android.com/apk/res/android">
</menu>

The <item> element defines each individual menu item and is enclosed in the <menu>
element. A basic menu item looks as follows:

<item
 android:id="@+id/settings"
 android:title="@string/settings" />

The most common <item> attributes are the following:

ff id: This is the standard resource identifier

ff title: This indicates the text to display

ff icon: This is a draw-able resource

ff showAsAction: This has been explained as follows (see the following paragraph)

ff enabled: This is enabled by default

Let's look at showAsAction in more detail.

Chapter 4

71

The showAsAction attribute controls how the menu item is shown. The options include
the following:

ff ifRoom: This menu item should be included in the Action Bar if there's enough space

ff withText: This indicates that both the title and the icon should be shown

ff never: This indicates that the menu item should never be included in the Action Bar;
always show in the overflow menu

ff always: This indicates that the menu item should be always included in the Action
Bar (use sparingly as space is limited)

Multiple options can be combined using the pipe (|) separator,
such as showAsAction="ifRoom|withText".

With the fundamentals of the menu resource covered, we are now ready to create a standard
Options menu and inflate it.

Getting ready
Use Android Studio to create a new project called OptionsMenu. Use the default Phone &
Tablet option and select the Empty Activity option when prompted for the Activity Type. Since
the wizard does not create the res/menu folder by default, navigate to File | New | Directory
to create it before continuing.

How to do it...
With the new project created as described in the preceding section, you are ready to create
a menu. However, first, we will add a string resource to the strings.xml file for the menu
title. We will use the new string for the menu title when we create the XML for the menu.
Here are the steps:

1.	 Start by opening the strings.xml file and add the following <string> element to
the <resources> element:
<string name="menu_settings">Settings</string>

2.	 Create a new file in the res/menu directory and call it menu_main.xml.

3.	 Open the menu_main.xml file and add the following XML to define the menu:
<?xml version="1.0" encoding="utf-8"?>
<menu
 xmlns:android="http://schemas.android.com/apk/
 res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">
 <item android:id="@+id/menu_settings"

Menus

72

 android:title="@string/menu_settings"
 app:showAsAction="never">
 </item>
</menu>

4.	 With the menu now created, we just have to override the onCreateOptionsMenu()
method in ActivityMain.java to inflate the menu:
@Override
public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.menu_main, menu);
 return true;
}

5.	 Run the program on a device or emulator to see the menu in the Action Bar.

How it works...
There are two basic steps here:

1.	 Define the menu in XML.

2.	 Inflate the menu when the activity is created.

As a good programming habit, we define the string in the strings.xml file rather than
hardcoding it in the XML. We then use the standard Android string identifier to set the title for
the menu in Step 3. Since this is a "Settings" menu item, we don't want this to be shown in
the Action Bar. To make sure it is never shown, use showAsAction="never".

With the menu defined, we will use the menu inflater in Step 4 to load the menu during the
Activity creation. Notice the R.menu.menu_main menu resource syntax? This is why we
create the XML in the res/menu directory — so the system will know this is a menu resource.

In Step 4, we used app:showAsAction rather than Android: android:showAsAction.
This is because we are using the AppCompat library (also referred to as the Android Support
Library). By default, the Android Studio new project wizard includes the support library in
the project.

There's more...
If you ran the program in Step 5, then you must have seen the Settings menu item when you
pressed the menu overflow button. But that was it. Nothing else happened. Obviously, menu
items aren't very useful if the application doesn't respond to them. Responding to the Options
menu is done through the onOptionsItemSelected() callback.

Chapter 4

73

Add the following method to the application to see a Toast when the Settings menu is selected:

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 if (item.getItemId() == R.id.menu_settings) {
 Toast.makeText(this, "Settings",
 Toast.LENGTH_LONG).show();
 } else {
 return super.onContextItemSelected(item);
 }
 return true;
}

That's it. You now have a working menu!

As shown in the preceding example, return true when you've
handled the callback; otherwise, call the super class as shown
in the else statement.

Using a menu item to launch an activity
In this example, we show a Toast so we can see a working example; however, we could just as
easily launch a new activity if needed. As you did in the Starting a new activity with an Intent
object recipe of Chapter 1, Activities, create an Intent and call it with startActivity().

Creating sub menus
Sub menus are created and accessed in almost exactly the same manner as other menu
elements and can be placed in any of the provided menus, although they cannot be placed
within other sub menus. To define a sub menu, include a <menu> element within an <item>
element. Here is the XML form this recipe with two sub menu items added:

<?xml version="1.0" encoding="utf-8"?>
<menu
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">
 <item android:id="@+id/menu_settings
 android:title="@string/menu_settings"
 app:showAsAction="never">
 <menu>
 <item android:id="@+id/menu_sub1"
 android:title="Storage Settings" />
 <item android:id="@+id/menu_sub2"
 android:title="Screen Settings" />
 </menu>
 </item>
</menu>

Menus

74

Grouping menu items
Another menu feature that Android supports is grouping menu items. Android provides several
methods for groups, including the following:

ff setGroupVisible(): Show or hide all items

ff setGroupEnabled(): Enable or disable all items

ff setGroupCheckable(): Set the checkable behavior

Android will keep all grouped items with showAsAction="ifRoom"
together. This means all items in the group with showAsAction="ifRoom"
will be in the Action Bar or all items will be in the overflow.

To create a group, add the <item> menu elements to a <group> element. Here is an
example using the menu XML from this recipe with two additional items in a group:

<?xml version="1.0" encoding="utf-8"?>
<menu
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">

 <group android:id="@+id/group_one" >
 <item android:id="@+id/menu_item1"
 android:title="Item 1"
 app:showAsAction="ifRoom"/>
 <item android:id="@+id/menu_item2"
 android:title="Item 2"
 app:showAsAction="ifRoom"/>
 </group>
 <item android:id="@+id/menu_settings"
 android:title="@string/menu_settings"
 app:showAsAction="never"/>
</menu>

See also
ff For complete details on the menu, visit the Android Developer Menu Resources site

at http://developer.android.com/guide/topics/resources/menu-
resource.html

Chapter 4

75

Modifying menus and menu items during
runtime

Though it's been stated many times, it's considered the "best" programming practice to create
UI in XML rather than in Java. There are still times when you may need to do it in code. This is
especially true if you wanted a menu item to be visible (or enabled) based on some external
criteria. Menus can also be included in resource folders, but there are times when you need
code to perform the logic. One example might be if you wanted to offer an upload menu item
only if the user is logged in to your app.

In this recipe, we will create and modify the menu only through code.

Getting ready
Create a new project in Android Studio and call it RuntimeMenu using the default Phone &
Tablet option. Select the Empty Activity option when prompted to add an Activity. Since
we will create and modify the menu completely in code, we will not need to create a
res/menu directory.

How to do it...
To start, we will add string resources for our menu items and a button to toggle the menu
visibility. Open the res/strings.xml file and follow these steps:

1.	 Add the following two strings to the existing <resources> element:
<string name="menu_download">Download</string>
<string name="menu_settings">Settings</string>

2.	 Add a button to activity_main.xml with onClick() set to toggleMenu as
shown here:
<Button
 android:id="@+id/buttonToggleMenu"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Toggle Menu"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true"
 android:onClick="toggleMenu"/>

Menus

76

3.	 Open ActivityMain.java and add the following three lines of code just below the
class declaration:
private final int MENU_DOWNLOAD = 1;
private final int MENU_SETTINGS = 2;
private boolean showDownloadMenu = false;

4.	 Add the following method for the button to call:
public void toggleMenu(View view) {
 showDownloadMenu=!showDownloadMenu;
}

5.	 When the activity is first created, Android calls onCreateOptionsMenu() to create
the menu. Here is the code to dynamically build the menu:
@Override
public boolean onCreateOptionsMenu(Menu menu) {
 menu.add(0, MENU_DOWNLOAD, 0, R.string.menu_download);
 menu.add(0, MENU_SETTINGS, 0, R.string.menu_settings);
 return true;
}

6.	 For best programming practice, don't use onCreateOptionsMenu() to update or
change your menu; instead, use onPrepareOptionsMenu(). Here is the code to
change the visibility of the Download menu item based on our flag:
@Override
public boolean onPrepareOptionsMenu(Menu menu) {
 MenuItem menuItem = menu.findItem(MENU_DOWNLOAD);
 menuItem.setVisible(showDownloadMenu);
 return true;
}

7.	 Though not technically required for this recipe, this onOptionsItemSelected()
code shows how to respond to each menu item:
@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case MENU_DOWNLOAD:
 Toast.makeText(this, R.string.menu_download,
 Toast.LENGTH_LONG).show();
 break;
 case MENU_SETTINGS:
 Toast.makeText(this, R.string.menu_settings,
 Toast.LENGTH_LONG).show();
 break;

Chapter 4

77

 default:
 return super.onContextItemSelected(item);
 }
 return true;
}

8.	 Run the program on a device or emulator to see the menu changes.

How it works...
We created an override for onCreateOptionsMenu(), just like we did in the previous recipe,
Creating an Options Menu. But instead of inflating an existing menu resource, we created the
menu using the Menu.add() method. Since we want to modify the menu items later as well
as respond to the menu item events, we have defined our own menu IDs and passed them to
the add() method.

onOptionsItemSelected() is called for all the menu items, so we get the menu ID and
use a switch statement based on the IDs we created. We return true if we are handling
the menu event, otherwise we pass the event to the super class.

Changing the menu occurs in the onPrepareOptionsMenu() method. To simulate an
external event, we created a button to toggle a Boolean flag. The visibility of the Download
menu is determined by the flag. This is where you would want to create your custom code
based on whatever criteria you set. Your flag could be set using the current player level or
maybe when a new level is ready for release; you send a Push message, which enables the
menu item.

There's more...
What if we wanted this Download option to be easily noticed to indicate whether it's available?
We could tell Android we want the menu in the Action Bar by adding the following code
to onPrepareOptionsMenu() (before the return statement):

menuItem.setShowAsAction(MenuItem.SHOW_AS_ACTION_ALWAYS);

Now if you run the code, you will see the Download menu item in the Action Bar, but the
behavior isn't correct.

Earlier, when we didn't have a menu item in the Action Bar, Android called
onPrepareOptionsMenu() each time we opened the overflow menu so the visibility was
always updated. To correct this behavior, add the following line of code to the toggleMenu()
method called by the button:

invalidateOptionsMenu();

Menus

78

The invalidateOptionsMenu() call tells Android that our option menu is no longer valid,
which then forces a call to onPrepareOptionsMenu() giving us the behavior we expect.

Android considers the menu as always open if a menu item is displayed
in the Action Bar.

Enabling Contextual Action Mode for a view
A Context Menu provides additional options related to a specific view—the same concept as
a right-click on the desktop. Android currently supports two different approaches: the floating
Context Menu and Contextual Mode. Contextual Action Mode was introduced in Android 3.0.
The older floating Context Menu could lead to confusion since there was no indication of the
currently selected item and it didn't support actions on multiple items—such as selecting
multiple emails to delete in one action.

Creating a Floating Context Menu
If you need to use the old style Context Menu, for example, to support preAndroid 3.0 devices,
it's very similar to the Option Menu API, just different method names. To create the menu,
use onCreateContextMenu() instead of onCreateOptionsMenu(). To handle the menu
item selection, use onContextItemSelected() instead of onOptionsItemSelected().
Finally, call registerForContextMenu() to let the system know you want Context Menu
events for the view.

Since Contextual Mode is considered the preferred way to display context options, this recipe
will focus on the newer API. Contextual Mode offers the same features as the floating Context
Menu, but also adds additional functionality by allowing multiple item selection when using
batch mode.

This recipe will demonstrate the setup of Contextual Mode for a single view. Once activated,
with a long press, a Contextual Action Bar (CAB) will replace the Action Bar until Contextual
Mode is finished.

The Contextual Action Bar is not the same as the Action Bar and your
activity does not need to include an Action Bar.

Chapter 4

79

Getting ready
Use Android Studio to create a new project and call it ContextualMode. Use the default
Phone & Tablet option and select Empty Activity when prompted to add an Activity. Create a
menu directory (res/menu) as we did in the first recipe, Creating an Options menu, to store
the XML for the contextual menu.

How to do it...
We will create an ImageView to serve as the host view to initialize Contextual Mode. Since
Contextual Mode is usually triggered with a long press, we will set up a long click listener in
onCreate() for the ImageView. When called, we will start Contextual Mode and pass an
ActionMode callback to handle the Contextual Mode events. Here are the steps:

1.	 We will start by adding two new string resources. Open the strings.xml file and
add the following:
<string name="menu_cast">Cast</string>
<string name="menu_print">Print</string>

2.	 With the strings created, we can now create the menu by creating a new file in res/
menu called context_menu.xml using the following XML:
<?xml version="1.0" encoding="utf-8"?>
<menu
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">
<item android:id="@+id/menu_cast"
 android:title="@string/menu_cast" />
<item android:id="@+id/menu_print"
 android:title="@string/menu_print" /> </menu>

3.	 Now add an ImageView to activity_main.xml to serve as the source for
initiating Contextual Mode. Here is the XML for the ImageView:
<ImageView
 android:id="@+id/imageView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true"
 android:src="@mipmap/ic_launcher"/>

Menus

80

4.	 With the UI now set up, we can add the code for Contextual Mode. First, we
need a global variable to store the ActionMode instance returned when we call
startActionMode(). Add the following line of code to MainActivity.java
below the class constructor:
ActionMode mActionMode;

5.	 Next, create an ActionMode callback to pass to startActionMode(). Add the
following code to the MainActivity class below the code in the previous step:
private ActionMode.Callback mActionModeCallback = new ActionMode.
Callback() {
 @Override
 public boolean onCreateActionMode(ActionMode mode,
 Menu menu) {
 mode.getMenuInflater().inflate(R.menu.context_menu,
 menu);
 return true;
 }
 @Override
 public boolean onPrepareActionMode(ActionMode mode,
 Menu menu) {
 return false;
 }
 @Override
 public boolean onActionItemClicked(ActionMode mode,
 MenuItem item) {
 switch (item.getItemId()) {
 case R.id. menu_cast:
 Toast.makeText(MainActivity.this, "Cast",
 Toast.LENGTH_SHORT).show();
 mode.finish();
 return true;
 case R.id. menu_print:
 Toast.makeText(MainActivity.this, "Print",
 Toast.LENGTH_SHORT).show();
 mode.finish();
 return true;
 default:
 return false;
 }
 }
 @Override
 public void onDestroyActionMode(ActionMode mode) {
 mActionMode = null;
 }
};

Chapter 4

81

6.	 With the ActionMode callback created, we just need to call startActionMode()
to begin Contextual Mode. Add the following code to the onCreate() method to set
up the long click listener:
ImageView imageView = (ImageView)findViewById(
 R.id.imageView);
imageView.setOnLongClickListener(new
 View.OnLongClickListener() {
 public boolean onLongClick(View view) {
 if (mActionMode != null) return false;
 mActionMode = startActionMode(mActionModeCallback);
 return true;
 }
});

7.	 Run the program on a device or emulator to see the CAB in action.

How it works...
As you saw in Step 2, we have used the same menu XML to define the contextual menu as the
other menus.

The main piece of code to understand is the ActionMode callback. This is where we
handle the Contextual Mode events: initializing the menu, handling menu item selections,
and cleaning up. We start Contextual Mode in the long press event with a call to
startActionMode() by passing in the ActionMode callback created in Step 5.

When action mode is triggered, the system calls the onCreateActionMode() callback,
which inflates the menu and displays it in the Contextual Action Bar. The user can dismiss the
Contextual Action Bar by pressing the back arrow or the back key. The CAB is also dismissed
when the user makes a menu selection. We show a Toast to give a visual feedback for this
recipe but this is where you would implement your functionality.

There's more...
In this example, we store the ActionMode returned from the startActionMode() call. We
use it to prevent a new instance from being created when the Action Mode is already active.
We could also use this instance to make changes to the Contextual Action Bar itself, such as
changing the title with the following:

mActionMode.setTitle("New Title");

This is particularly useful when working with multiple item selections as we'll see in the
next recipe.

Menus

82

See also
ff See the next recipe, Using Contextual Batch Mode with a ListView, to work with

multiple items selection

Using Contextual Batch Mode with
a ListView

As discussed in the previous recipe, Contextual Mode supports two forms of use: single
View mode (as demonstrated) and multiple selection (or batch) mode. Batch mode is where
Contextual Mode outperforms the old style Context Menu as multiple selections were not
supported.

If you've ever used an e-mail app such as Gmail or a file browser, you've probably seen
Contextual Mode when selecting multiple items. Here is a screenshot from Solid Explorer,
which shows an excellent implementation of Material Theme and Contextual Mode:

Chapter 4

83

In this recipe, we will create a ListView populated with multiple country names to
demonstrate multiple selections or batch mode. This example will use the normal long
press event and also the item click event to start Contextual Mode.

Getting ready
Create a new project in Android Studio and call it ContextualBatchMode. Use the default
Phone & Tablet option and select Empty Activity when prompted to add an Activity. Create a
menu directory (res/menu) for the contextual menu.

How to do it...
Similar to the previous recipe, we start by creating a menu in XML to inflate when Contextual
Mode begins. We need to define MultiChoiceModeListener to handle batch mode with
the ListView. We then set up the ListView to allow multiple selections and pass in the
MultiChoiceModeListener. Here are the steps:

1.	 Open the strings.xml file and add two new string resources for the menu items
as follows:
<string name="menu_move">Move</string>
<string name="menu_delete">Delete</string>

2.	 Create a new file called contextual_menu.xml in the res/menu folder with the
following XML:
<?xml version="1.0" encoding="utf-8"?>
<menu
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">
 <item android:id="@+id/menu_move"
 android:title="@string/menu_move" />
 <item android:id="@+id/menu_delete
 android:title="@string/menu_delete" />
</menu>

3.	 Since we need a ListView, we will change MainActivity to extend from
ListActivity as follows:
public class MainActivity extends ListActivity

Menus

84

4.	 Create a MultiChoiceModeListener to handle the Contextual Action Bar events.
Add the following code to MainActivity.java below the class constructor:
AbsListView.MultiChoiceModeListener
 mMultiChoiceModeListener = new
 AbsListView.MultiChoiceModeListener() {
 @Override
 public void onItemCheckedStateChanged(ActionMode mode,
 int position, long id, boolean checked) {
 }

 @Override
 public boolean onCreateActionMode(ActionMode mode, Menu
 menu) {
 // Inflate the menu for the CAB
 MenuInflater inflater = mode.getMenuInflater();
 inflater.inflate(R.menu.contextual_menu, menu);
 return true;
 }

 @Override
 public boolean onPrepareActionMode(ActionMode mode,
 Menu menu) {
 return false;
 }

 @Override
 public boolean onActionItemClicked(ActionMode mode,
 MenuItem item) {
 // Handle menu selections
 switch (item.getItemId()) {
 case R.id.menu_move
 Toast.makeText(MainActivity.this, "Move",
 Toast.LENGTH_SHORT).show();
 mode.finish();
 return true;
 case R.id.menu_delete
 Toast.makeText(MainActivity.this, "Delete",
 Toast.LENGTH_SHORT).show();
 mode.finish();
 return true;
 default:
 return false;
 }
 }

Chapter 4

85

 @Override
 public void onDestroyActionMode(ActionMode mode) {
 }
};

5.	 Next, we will change the onCreate() to set up the ListView and populate a
ListAdapter using a string array of country names, as follows:
@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 String[] countries = new String[]{"China", "France",
 "Germany", "India", "Russia", "United Kingdom",
 "United States"};
 ListAdapter countryAdapter = new ArrayAdapter<String>(
 this, android.R.layout.simple_list_item_checked,
 countries);
 setListAdapter(countryAdapter);
 getListView().setChoiceMode(
 ListView.CHOICE_MODE_MULTIPLE_MODAL);
 getListView().setMultiChoiceModeListener(
 mMultiChoiceModeListener);

 getListView().setOnItemClickListener(new
 AdapterView.OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView<?> parent, View
 view, int position, long id) {
 ((ListView)parent).setItemChecked(position,
 true);
 }
 });
}

6.	 Run the program on a device or emulator to see the CAB in action.

How it works...
The three key elements to make Action Mode work in batch mode are:

1.	 Creating a Contextual Menu to inflate

2.	 Defining MultiChoiceModeListener to pass to
setMultiChoiceModeListener()

3.	 Set ChoiceMode of the ListView to CHOICE_MODE_MULTIPLE_MODAL.

Menus

86

MultiChoiceModeListener serves the same purpose as the ActionMode callback used
in single-view Contextual Mode, and in fact, implements ActionMode.Callback. As with
ActionMode.Callback, the menu is inflated when MultiChoiceModeListener calls
onCreateActionMode().

By default, Context Mode is initiated with a long press on an item in the ListView. We
will go a step further by starting Contextual Mode when the item is checked using the
onItemClick() event. If we don't do this, the only way to initiate the Contextual Mode would
be with a long click, which may leave many users unaware of the additional functionality.

There's more...
As mentioned in the introduction to this chapter, your activity does not need to include an
Action Bar to use a Contextual Action Bar. If you do have an Action Bar and it's visible, it will
be overlaid with the CAB. If you do not have an Action Bar as the default with this recipe, the
layout will be redrawn to include the CAB (and redrawn again when the CAB is dismissed). If
you want the Action Bar to be visible, either change the theme for the Activity or change the
base class and set up the ListView manually.

See also
ff For more information on the ListView, refer to Chapter 2, Layouts

Creating a pop-up menu
A pop-up menu is attached to a view similar to the dropdown on a spinner. The idea of a
pop-up menu is to provide additional options to complete an action. A common example might
be a Reply button in an e-mail app. When pressed, several reply options are shown, such as:
Reply, Reply All, and Forward.

Here is an example of the pop-up menu from the recipe:

Chapter 4

87

Android will show the menu options below the anchor view if there is room; otherwise, it will
show them above the view.

A pop-up menu is not meant to affect the view itself. That is the purpose of a
Context Menu. Instead refer to the Floating Menu/Context Mode described in
the Enabling Contextual Action Mode for a view recipe.

In this recipe, we will create the pop-up menu shown previously, using an ImageButton as
the anchor view.

Getting ready
Create a new project in Android Studio and call it PopupMenu. Use the default Phone &
Tablet option and select Empty Activity when prompted to add an Activity. As before,
create a menu directory (res/menu) to store the menu XML.

How to do it...
We start by creating the XML menu to inflate on the button press. After inflating the pop-up
menu, we call setOnMenuItemClickListener() by passing in the callback to handle
the menu item selection. Here are the steps:

1.	 Add the following strings to strings.xml:
<string name="menu_reply">Reply</string>
<string name="menu_reply_all">Reply All</string>
<string name="menu_forward">Forward</string>

2.	 Create a new file in the res/menu directory called menu_popup.xml using the
following XML:
<?xml version="1.0" encoding="utf-8"?>
<menu
 xmlns:android="http://schemas.android.com/
 apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">
 <item android:id="@+id/menu_reply
 android:title="@string/menu_reply" />
 <item android:id="@+id/menu_reply_all
 android:title="@string/menu_reply_all" />
 <item android:id="@+id/menu_forward
 android:title="@string/menu_forward" />
</menu>

Menus

88

3.	 Create an ImageButton in activity_main.xml to provide the anchor view for the
pop-up menu. Create it as shown in the following XML code:
<ImageButton
 android:id="@+id/imageButtonReply"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true"
 android:src="@android:drawable/ic_menu_revert"
 android:onClick="showPopupMenu"/>

4.	 Open MainActivity.java and add the following OnMenuItemClickListener
below the class constructor:
private PopupMenu.OnMenuItemClickListener
 mOnMenuItemClickListener = new
 PopupMenu.OnMenuItemClickListener() {
 @Override
 public boolean onMenuItemClick(MenuItem item) {
 // Handle menu selections
 switch (item.getItemId()) {
 case R.id.menu_reply
 Toast.makeText(MainActivity.this, "Reply",
 Toast.LENGTH_SHORT).show();
 return true;
 case R.id.menu_reply_all
 Toast.makeText(MainActivity.this,"Reply
 All",Toast.LENGTH_SHORT).show();
 return true;
 case R.id.menu_forward
 Toast.makeText(MainActivity.this,
 "Forward", Toast.LENGTH_SHORT).show();
 return true;
 default:
 return false;
 }
 }
};

Chapter 4

89

5.	 The final code is to handle the button onClick() event, as follows:
public void showPopupMenu(View view) {
 PopupMenu popupMenu = new PopupMenu(
 MainActivity.this,view);
 popupMenu.inflate(R.menu.menu_popup);
 popupMenu.setOnMenuItemClickListener(
 mOnMenuItemClickListener);
 popupMenu.show();
}

6.	 Run the program on a device or emulator to see the pop-up menu.

How it works...
If you have read the previous menu recipes, this will probably look very familiar. Basically,
we just inflate a pop-up menu when the ImageButton is pressed. We set up a menu item
listener to respond to the menu selection.

The key is to understand each of the menu options available in Android so you can use the
correct menu type for a given scenario. This will help your application by providing a consistent
user experience and reducing the learning curve.

91

5
Exploring Fragments,
AppWidgets, and the

System UI

In this chapter, we will cover the following topics:

ff Creating and using a Fragment

ff Adding and removing Fragments during runtime

ff Passing data between Fragments

ff Creating a shortcut on the Home screen

ff Creating a Home screen widget

ff Adding Search to the Action Bar

ff Showing your app full screen

Introduction
With a firm understanding of layouts from Chapter 2, Layouts, we'll dig deeper into UI
development with Fragments. Fragments are a way to separate your UI into smaller sections
that can easily be reused. Think of Fragments as mini-activities, complete with their own
classes, layouts, and lifecycle. Instead of designing your screen in one Activity Layout, possibly
duplicating functionality across multiple layouts, you can break the screen into smaller,
logical sections and turn them in to Fragments. Your Activity Layout can then reference one
or multiple Fragments, as needed. The first three recipes will explore Fragments in-depth.

Exploring Fragments, AppWidgets, and the System UI

92

With an understanding of Fragments, we're ready to expand on our discussion of Widgets. In
Chapter 3, Views, Widgets, and Styles, we discussed how to add widgets to your own app. Now,
we'll look at how to create an App Widget so users can put their app on their Home screen.

The last recipes of the chapter will explore System UI options. We have a recipe for adding
a Search option to the Action Bar using the Android SearchManager API. The last recipe
shows Full Screen mode and several additional variations of altering the System UI.

Creating and using a Fragment
Android didn't always support Fragments. The early versions of Android were designed for
phones, when screens had relatively small displays. It wasn't until Android started being
used on tablets that there was a need to split the screen into smaller sections. Android 3.0
introduced the Fragments class and the Fragment Manager.

Along with a new class, also came the Fragment Lifecycle. The Fragment Lifecycle is similar
to the Activity Lifecycle introduced in Chapter 1, Activities, as most events parallel the
Activity Lifecycle.

Here's a brief overview of the main callbacks:

ff onAttach(): It's called when the Fragment is associated with an Activity.

ff onCreate(): It's called when the Fragment is first created.

ff onCreateView(): It's called when the Fragment is about to be displayed for the
first time.

ff onActivityCreated(): It's called when the associated Activity is created.

ff onStart(): It's called when the Fragment will become visible to the user.

ff onResume(): It's called just before a Fragment is displayed.

ff onPause(): It's called when the Fragment is first suspended. The user may return
to the Fragment, but this is where you should persist any user data.

ff onStop(): It's called when the Fragment is no longer visible to the user.

ff onDestroyView(): It's called to allow final cleanup.

ff onDetach(): It's called when the Fragment is no longer associated with the Activity.

For our first exercise, we will create a new Fragment derived from the standard Fragment
class. But there are several other Fragment classes we could derive from, including:

ff DialogFragment: It's used for creating a floating dialog

ff ListFragment: It's creates a ListView in a Fragment, similar to the
ListActivity

ff PreferenceFragment: It's creates a list of Preference objects, commonly used for
a Settings page

Chapter 5

93

In this recipe, we will walk through creating a basic Fragment derived from the Fragment
class and include it in an Activity Layout.

Getting ready
Create a new project in Android Studio and call it: CreateFragment. Use the default Phone
& Tablet options and select the Empty Activity option when prompted for the Activity Type.

How to do it...
In this recipe, we will create a new Fragment class with an accompanying layout file. We will
then add the Fragment to the Activity Layout so it will be visible when the Activity starts. Here
are the steps to create and display a new Fragment:

1.	 Create a new layout called fragment_one.xml using the following XML:
<RelativeLayout xmlns:android="http://schemas.android.com/
 apk/res/android"
 android:layout_height="match_parent"
 android:layout_width="match_parent">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Fragment One"
 android:id="@+id/textView"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true" />
</RelativeLayout>

2.	 Create a new Java file called FragmentOne with the following code:
public class FragmentOne extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 return inflater.inflate(R.layout.fragment_one,
 container, false);
 }
}

3.	 Open the main_activity.xml file and replace the existing <TextView> element
with the following <fragment> element:
 <fragment
 android:name="com.packtpub.androidcookbook.
 createfragment.FragmentOne"
 android:id="@+id/fragment"

Exploring Fragments, AppWidgets, and the System UI

94

 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true"
 tools:layout="@layout/fragment_one" />

4.	 Run the program on a device or emulator.

How it works...
We start by creating a new class, the same as we do for an Activity. In this recipe, we only
create an overwrite for the onCreateView() method to load our Fragment layout. But,
just like with the Activity events, we can override the other events as we need them. Once
the new Fragment is created, we then add it to the Activity Layout. Since the Activity
class was created before Fragments existed, they do not support Fragments. If we were
using pure framework classes, we would want to use FragmentActivity instead. If you
used the Android Studio New Project Wizard, then by default the MainActivity extends
AppCompatActivity, which already includes support for Fragments.

There's more...
We're only creating a single, simple Fragment in this recipe to teach the fundamentals of
Fragments. But this is a good time to point out the power of Fragments. If we are creating
multiple Fragments (and usually we are, as that's the point of using Fragments), when creating
the Activity Layouts as we did in Step 4, we could create different layout configurations using
the Android Resource Folders. The portrait layout may have only a single Fragment while the
landscape may have two or more.

Adding and removing Fragments during
runtime

Defining a Fragment in the layout, as we did in the previous recipe, is known as a static
Fragment and cannot be changed during runtime. Rather than using the <fragment>
element, we will create a container to hold the Fragment, then create the Fragment
dynamically in the Activity's onCreate() method.

The FragmentManager provides the APIs for adding, removing, and changing Fragments
during runtime using a FragmentTransaction. A Fragment transaction consists of:

ff Starting a transaction

ff Performing one or multiple actions

ff Committing the transaction

Chapter 5

95

This recipe will demonstrate the FragmentManager by adding and removing Fragments
during runtime.

Getting ready
Create a new project in Android Studio and call it: RuntimeFragments. Use the default
Phone & Tablet options and select the Empty Activity option when prompted for the
Activity Type.

How to do it...
To demonstrate adding and removing Fragments, we first need to create the Fragments, which
we will do be extending the Fragment class. After creating the new Fragments, we need to
alter the layout for the Main Activity to include the Fragment container. From there, we just
add the code to handle the Fragment transactions. Here are the steps:

1.	 Create a new layout file called fragment_one.xml and include the following XML:
<RelativeLayout xmlns:android="http://schemas.android.com/
 apk/res/android"
 android:layout_height="match_parent"
 android:layout_width="match_parent">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Fragment One"
 android:id="@+id/textView"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true" />
</RelativeLayout>

2.	 The second layout file called fragment_two.xml is almost identical, with the only
difference being the text:
android:text="Fragment Two"

3.	 Create a new Java file called FragmentOne with the following code:
public class FragmentOne extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 return inflater.inflate(R.layout.fragment_one,
 container, false);
 }
}

Import from the following library:
android.support.v4.app.Fragment

Exploring Fragments, AppWidgets, and the System UI

96

4.	 Create the second Java file called FragmentTwo with the following code:
public class FragmentTwo extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 return inflater.inflate(R.layout.fragment_two,
 container, false);
 }
}

Import from the following library:
android.support.v4.app.Fragment

5.	 Now we need to add a container and a button to the Main Activity layout. Change
main_activity.xml as follows:
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/
 apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <FrameLayout
 android:id="@+id/frameLayout"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_above="@+id/buttonSwitch"
 android:layout_alignParentTop="true">
 </FrameLayout>
 <Button
 android:id="@+id/buttonSwitch"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Switch"
 android:layout_alignParentBottom="true"
 android:layout_centerInParent="true"
 android:onClick="switchFragment"/>
</RelativeLayout>

6.	 With the Fragments created and the container added to the layout, we are now ready
to write the code to manipulate the Fragments. Open MainActivity.java and add
the following code below the class constructor:
FragmentOne mFragmentOne;
FragmentTwo mFragmentTwo;
int showingFragment=0;

Chapter 5

97

7.	 Add the following code to the existing onCreate() method, below
setContentView():
mFragmentOne = new FragmentOne();
mFragmentTwo = new FragmentTwo();
FragmentManager fragmentManager =
 getSupportFragmentManager();
FragmentTransaction fragmentTransaction =
 fragmentManager.beginTransaction();
fragmentTransaction.add(R.id.frameLayout, mFragmentOne);
fragmentTransaction.commit();
showingFragment=1;

Import from the following libraries:

android.support.v4.app.FragmentManager
android.support.v4.app.FragmentTransaction

8.	 The last code we need to add handles the Fragment switching, called by the button:
public void switchFragment(View view) {
 FragmentManager fragmentManager =
 getSupportFragmentManager();
 FragmentTransaction fragmentTransaction =
 fragmentManager.beginTransaction();
 if (showingFragment==1) {
 fragmentTransaction.replace(R.id.frameLayout,
 mFragmentTwo);
 showingFragment = 2;
 } else {
 fragmentTransaction.replace(R.id.frameLayout,
 mFragmentOne);
 showingFragment=1;
 }
 fragmentTransaction.commit();
}

9.	 Run the program on a device or emulator.

How it works...
Most of the steps for this recipe involve setting up the Fragments. Once the Fragments are
declared, we create them in the onCreate() method. Though the code can be condensed
to a single line, it's shown in the long form as it makes it easier to read and understand.

Exploring Fragments, AppWidgets, and the System UI

98

First, we get the FragmentManager so we can begin a FragmentTransaction. Once
we have a FragmentTransaction, we start the transaction with beginTransaction().
Multiple actions can occur within the transaction, but all we need here is to add() our initial
Fragment. We call the commit() method to finalize the transaction.

Now that you understand the Fragment transaction, here is the succinct version for
onCreate():

getFragmentManager().beginTransaction().add(R.id.framLayout,
 mFragmentOne).commit();

switchFragment does basically the same type of Fragment transaction. Instead of calling
the add() method, we call the replace() method with the existing Fragment. We keep track
of the current Fragment with the showingFragment variable so we know which Fragment
to show next. We are not limited to switching between two Fragments either. If we needed
additional Fragments, we just need to create them.

There's more...
In the Switching between activities recipe from Chapter 1, Activities, we discussed the
back stack. Most users would expect the back key to move backward through the "screens"
and they don't know or care if those screens are activities or Fragments. Fortunately,
Android makes it very easy to add Fragments to the back stack just by adding a call to
addToBackStack() before calling commit().

When a Fragment is removed or replaced without adding it to the back stack,
it is immediately destroyed. If it is added to the back stack, it is stopped and,
if the user returns to the Fragment, it is restarted, instead of recreated.

Passing data between Fragments
Often, the need arises to pass information between the Fragments. An email application
serves as a classic example. It's common to have the list of emails in one Fragment, and
show the email details in another Fragment (this is commonly referred to as a Master/Detail
pattern). Fragments make creating this pattern easier because we only have to code each
Fragment once, then we can include them in different layouts. We can easily have a single
Fragment in a portrait layout with the ability to swap out the master Fragment with the detail
Fragment when an email is selected. We can also create a two-panel layout where both the
list and detail Fragments are side-by-side. Either way, when the user clicks the email in the
list, the email opens up in the detail panel. This is when we need to communicate between
two Fragments.

http://developer.android.com/reference/android/support/v4/app/FragmentTransaction.html#addToBackStack(java.lang.String)

Chapter 5

99

Since one of the primary goals of Fragments is that they be completely self-contained, direct
communication between Fragments is discouraged, and for good reason. If Fragments had to
rely on other Fragments, your code would likely break when the layouts changed and only one
Fragment was available. Fortunately, direct communication is not required for this scenario
either. All Fragment communication should pass through the host Activity. The host activity is
responsible for managing the Fragments and can properly route the messages.

Now the question becomes: How do Fragments communicate with the activity? The answer is
with an interface. You're probably already familiar with an interface, as that's how a view
communicates an event back to an activity. A button click is a common example.

In this recipe, we will create two Fragments to demonstrate passing data from one Fragment
to another via the host activity. We'll also build on what we learned from the previous recipe
by including two different Activity Layouts—one for portrait and one for landscape. When in
portrait mode, the activity will swap the Fragments as needed. Here is a screenshot of when
the application first runs in portrait mode:

Exploring Fragments, AppWidgets, and the System UI

100

This is the screen showing the detail Fragment when you click on a country name:

When in landscape, both Fragments will be side-by-side, as shown in the landscape
screenshot:

Chapter 5

101

Since the Master/Detail pattern generally involves a list for the master, we'll take advantage
of the ListFragment (mentioned in the Creating and using a Fragment introduction.) When
an item in the list is selected, the item text (country name in our example) will be sent to the
detail Fragment via the host Activity.

Getting ready
Create a new project in Android Studio and call it: Fragmentcommunication. Use the default
Phone & Tablet options and select Empty Activity when prompted for the Activity Type.

How to do it...
To fully demonstrate working Fragments, we'll need to create two Fragments. The first
Fragment will extend from the ListFragment so it will not need a layout. We're going to go
one step further by creating both portrait and landscape layouts for our Activity. For portrait
mode, we'll swap Fragments and for landscape mode, we'll show both Fragments side-by-side.

When typing this code, Android Studio will offer two different library
import options. Since the New Project Wizard automatically references the
AppCompat library, we need to use the support library APIs instead of the
framework APIs. Though very similar, the following code uses the support
Fragment APIs.

Here are the steps, starting with the first Fragment:

1.	 Create a new Java class called MasterFragment and change it so it extends
ListFragment as shown:
public class MasterFragment extends ListFragment

Import from the following library:

android.support.v4.app.ListFragment

2.	 Create the following interface inside the MasterFragment class:
public interface OnMasterSelectedListener {
 public void onItemSelected(String countryName);
}

3.	 Set up the interface callback listener with the following code:
private OnMasterSelectedListener
 mOnMasterSelectedListener=null;

public void setOnMasterSelectedListener(
 OnMasterSelectedListener listener) {
 mOnMasterSelectedListener=listener;
}

Exploring Fragments, AppWidgets, and the System UI

102

4.	 The last step for the MasterFragment is to create a ListAdapter to populate
the ListView, which we do in the onViewCreated() method. We'll use the
setOnItemClickListener() to call our OnMasterSelectedListener
interface when a country name is selected with the following code:
public void onViewCreated(View view, Bundle
 savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);
 String[] countries = new String[]{"China", "France",
 "Germany", "India", "Russia", "United Kingdom",
 "United States"};
 ListAdapter countryAdapter = new ArrayAdapter<String>(
 getActivity(), android.R.layout.simple_list_item_1,
 countries);
 setListAdapter(countryAdapter);
 getListView().setChoiceMode(
 ListView.CHOICE_MODE_SINGLE);
 getListView().setOnItemClickListener(new
 AdapterView.OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView<?> parent, View
 view, int position, long id) {
 if (mOnMasterSelectedListener != null) {
 mOnMasterSelectedListener.onItemSelected(((
 TextView) view).getText().toString());
 }
 }
 });
}

5.	 Next we need to create the DetailFragment, starting with the Layout. Create a new
layout file called: fragment_detail.xml with the following XML:
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/
 res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:id="@+id/textViewCountryName"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true" />
</RelativeLayout>

Chapter 5

103

6.	 Create a new Java class called DetailFragment extending from Fragment
as follows:
public class DetailFragment extends Fragment

Import from the following library:
android.support.v4.app.Fragment

7.	 Add the following constant to the class:
public static String KEY_COUNTRY_NAME="KEY_COUNTRY_NAME";

8.	 Override onCreateView() as follows:
public View onCreateView(LayoutInflater inflater, ViewGroup
 container, Bundle savedInstanceState) {
 return inflater.inflate(R.layout.fragment_detail,
 container, false);
}

9.	 Code the onViewCreated() as follows:
public void onViewCreated(View view, Bundle
 savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);

 Bundle bundle = getArguments();
 if (bundle != null &&
 bundle.containsKey(KEY_COUNTRY_NAME)) {
 showSelectedCountry(bundle.getString(
 KEY_COUNTRY_NAME));
 }
}

10.	 The last step for this Fragment is to update the TextView when we receive the
selected country name. Add the following method to the class:
public void showSelectedCountry(String countryName) {
 ((TextView)getView().findViewById(
 R.id.textViewCountryName)).setText(countryName);
}

11.	 The existing activity_main.xml layout will handle the portrait mode layout.
Remove the existing <TextView> and replace with the following <FrameLayout>:
<FrameLayout
 android:id="@+id/frameLayout"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>

Exploring Fragments, AppWidgets, and the System UI

104

12.	 Create a new directory in the res folder for the landscape layout as:
res/layout-land.

If you do not see the new res/layout-land directory, change from
Android view to Project view.

13.	 Create a new activity_main.xml layout in res/layout-land as follows:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/
 apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="horizontal">
 <FrameLayout
 android:id="@+id/frameLayoutMaster"
 android:layout_width="0dp"
 android:layout_weight="1"
 android:layout_height="match_parent"/>
 <FrameLayout
 android:id="@+id/frameLayoutDetail"
 android:layout_width="0dp"
 android:layout_weight="1"
 android:layout_height="match_parent"/>
</LinearLayout>

14.	 The final steps are to set up the MainActivity to handle the Fragments. Open the
MainActivity.java file and add the following class variable to track single/dual
pane:
boolean dualPane;

15.	 Next, change onCreate() as follows:
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 MasterFragment masterFragment=null;
 FrameLayout frameLayout =
 (FrameLayout)findViewById(R.id.frameLayout);
 if (frameLayout != null) {
 dualPane=false;
 FragmentTransaction fragmentTransaction =
 getSupportFragmentManager().beginTransaction();

Chapter 5

105

 masterFragment=(MasterFragment)
 getSupportFragmentManager().
 findFragmentByTag("MASTER");
 if (masterFragment == null) {
 masterFragment = new MasterFragment();
 fragmentTransaction.add(R.id.frameLayout,
 masterFragment, "MASTER");
 }
 DetailFragment detailFragment = (DetailFragment)
 getSupportFragmentManager().findFragmentById(
 R.id.frameLayoutDetail);
 if (detailFragment != null) {
 fragmentTransaction.remove(detailFragment);
 }
 fragmentTransaction.commit();
 } else {
 dualPane=true;
 FragmentTransaction fragmentTransaction =
 getSupportFragmentManager().beginTransaction();
 masterFragment=(MasterFragment)
 getSupportFragmentManager().findFragmentById(
 R.id.frameLayoutMaster);
 if (masterFragment==null) {
 masterFragment = new MasterFragment();
 fragmentTransaction.add(R.id.frameLayoutMaster,
 masterFragment);
 }
 DetailFragment detailFragment=(DetailFragment)
 getSupportFragmentManager().findFragmentById(
 R.id.frameLayoutDetail);
 if (detailFragment==null) {
 detailFragment = new DetailFragment();
 fragmentTransaction.add(R.id.frameLayoutDetail,
 detailFragment);
 }
 fragmentTransaction.commit();
 }
 masterFragment.setOnMasterSelectedListener(new
 MasterFragment.OnMasterSelectedListener() {
 @Override
 public void onItemSelected(String countryName) {
 sendCountryName(countryName);
 }
 });
}

Exploring Fragments, AppWidgets, and the System UI

106

16.	 The last code to add is the sendCountryName() method, which handles sending
the country name to DetailFragment:
private void sendCountryName(String countryName) {
 DetailFragment detailFragment;
 if (dualPane) {
 //Two pane layout
 detailFragment = (DetailFragment)
 getSupportFragmentManager().findFragmentById(
 R.id.frameLayoutDetail);
 detailFragment.showSelectedCountry(countryName);
 } else {
 // Single pane layout
 detailFragment = new DetailFragment();
 Bundle bundle = new Bundle();
 bundle.putString(DetailFragment.KEY_COUNTRY_NAME,
 countryName);
 detailFragment.setArguments(bundle);
 FragmentTransaction fragmentTransaction =
 getSupportFragmentManager().beginTransaction();
 fragmentTransaction.replace(R.id.frameLayout,
 detailFragment);
 fragmentTransaction.addToBackStack(null);
 fragmentTransaction.commit();
 }
}

17.	 Run the program on a device or emulator.

How it works...
We start by creating the MasterFragment. In the Master/Detail pattern we are using,
this usually represents a list, so we create a list by extending the ListFragment. The
ListFragment is the Fragment equivalent of the ListActivity. Other than extending
from a Fragment, it's basically the same.

As stated in the recipe introduction, we shouldn't attempt to communicate directly with
other Fragments.

To provide a means to communicate the list item selection, we expose the interface:
OnMasterSelectedListener. We call onItemSelected() every time an item is
selected in the list.

Chapter 5

107

Most of the work for passing data between Fragments is done in the host activity but,
ultimately, the receiving Fragment needs a way to receive the data. DetailFragment
supports this in two ways:

ff Passing the country name in the argument bundle, available at creation time.

ff A public method for the activity to call directly.

When the activity creates the Fragment, it also creates a bundle to hold the data we want
to send. Here we add the country name using KEY_COUNTRY_NAME defined in Step 7. We
retrieve this bundle with getArguments() in onViewCreated(). If the key is found in the
bundle, it is extracted and displayed using the showSelectedCountry() method. This is
the same method the activity will call directly if the Fragment is already visible (in the two-
panel layout).

Most of the work for this recipe is in the activity. We created two layouts: one for portrait
and one for landscape. Android will choose the landscape layout using the res/layout-
land directory created in Step 12. Both layouts use a <FrameLayout> placeholder,
similar to the previous exercise. We manage the Fragments in both onCreate() and
sendCountryName().

In onCreate(), we set the dualPane flag by checking whether the current layout includes
the frameLayout view. If frameLayout is found (it won't be null), then we have only a single
panel because the frameLayout ID is only in the portrait layout. If frameLayout is not found,
then we have two <FrameLayout> elements instead: one for the MasterFragment and
another for the DetailFragment.

The last thing we do in the onCreate() is to set up the MasterFragment listener by
creating an anonymous callback, which passes the country name to sendCountryName().

sendCountryName() is where the data is actually passed to the DetailFragment. If we
are in portrait (or single pane) mode, we need to create a DetailFragment and replace
the existing MasterFragment. This is where we create the bundle with the country name
and call setArguments(). Notice how we call addToBackStack() before committing the
transaction? This allows the back key to bring the user back to the list (MasterFragment).
If we are in landscape mode, the DetailFragment is already visible so we call the
showSelectedCountry() public method directly.

There's more...
In the MasterFragment, before sending the onItemSelected() event, we check to make
sure the listener is not null with this code:

if (mOnMasterSelectedListener != null)

Exploring Fragments, AppWidgets, and the System UI

108

Though it's the job of the activity to set up the callback to receive the events, we don't want
this code to crash if there's no listener. An alternative approach would be to verify the activity
extends our interface in the Fragment's onAttach() callback.

See also
ff For more information on ListViews, see Using ListView, GridView and Adapters in

Chapter 2, Layouts.

ff For more information on resource directories, see Selecting themes based on the
Android version in Chapter 3, Views, Widgets, and Styles.

Creating a shortcut on the Home screen
This recipe explains how to create a link or create a shortcut for your app on the user's Home
screen. So as not to be too obtrusive, it's generally best to make this an option for the user to
initiate, such as in the settings.

Here is a screenshot showing our shortcut on the Home screen:

As you can see, this is just a shortcut, but we will explore creating a Home screen (AppWidget)
in the next recipe.

Chapter 5

109

Getting ready
Create a new project in Android Studio and call it: HomescreenShortcut. Use the default
Phone & Tablet options and select the Empty Activity option when prompted for the
Activity Type.

How to do it...
The first step is to add the appropriate permission. Here are the steps:

1.	 Open the AndroidManifest file and add the following permission:
<uses-permission android:name="com.android.launcher.
 permission.INSTALL_SHORTCUT" />

2.	 Next, open activity_main.xml and replace the existing TextView with the
following button:
<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Create Shortcut"
 android:id="@+id/button"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true"
 android:onClick="createShortcut"/>

3.	 Add the following method to ActivityMain.java:
public void createShortcut(View view) {
 Intent shortcutIntent = new Intent(this,
 MainActivity.class);
 shortcutIntent.setAction(Intent.ACTION_MAIN);
 Intent intent = new Intent();
 intent.putExtra(Intent.EXTRA_SHORTCUT_INTENT,
 shortcutIntent);
 intent.putExtra(Intent.EXTRA_SHORTCUT_NAME,
 getString(R.string.app_name));
 intent.putExtra(Intent.EXTRA_SHORTCUT_ICON_RESOURCE,
 Intent.ShortcutIconResource.fromContext(this,
 R.mipmap.ic_launcher));
 intent.setAction(
 "com.android.launcher.action.INSTALL_SHORTCUT");
 sendBroadcast(intent);
}

4.	 Run the program on a device or emulator. Notice, each time you press the button, the
app will make a shortcut on the Home screen.

Exploring Fragments, AppWidgets, and the System UI

110

How it works...
Once you set up the proper permission, this is a rather straightforward task. When the
button is clicked, the code creates a new intent called: shortcutIntent. This is the intent
that will be called when the icon is pressed on the Home screen. The next intent created,
installIntent, is responsible for actually creating the shortcut.

There's more...
If you also wanted to remove the shortcut, you would need the following permission:

<uses-permission android:name="com.android.launcher.
 permission.UNINSTALL_SHORTCUT" />

Instead of using the INSTALL_SHORTCUT action, you would set the following action instead:

com.android.launcher.action.UNINSTALL_SHORTCUT

Creating a Home screen widget
Before we dig in to the code for creating an App Widget, let's cover the basics. There are three
required and one optional component:

ff The AppWidgetProviderInfo file: It's an XML resource described later on

ff The AppWidgetProvider class: This is a Java class

ff The View layout file: It's a standard layout XML file, with some restrictions listed
later on

ff The App Widget configuration Activity (optional): This Activity launches when placing
the widget to set configuration options

The AppWidgetProvider must also be declared in the AndroidManifest file. Since the
AppWidgetProvider is a helper class based on the Broadcast Receiver, it is declared
in the manifest with the <receiver> element. Here is an example manifest entry:

<receiver android:name="AppWidgetProvider" >
 <intent-filter>
 <action android:name=
 "android.appwidget.action.APPWIDGET_UPDATE" />
 </intent-filter>
 <meta-data android:name="android.appwidget.provider"
 android:resource="@xml/appwidget_info" />
</receiver>

Chapter 5

111

The meta-data points to the AppWidgetProviderInfo file, which is placed in the res/xml
directory. Here is a sample AppWidgetProviderInfo.xml file:

<appwidget-provider xmlns:android="http://schemas.android.com/
 apk/res/android"
 android:minWidth="40dp"
 android:minHeight="40dp"
 android:updatePeriodMillis="1800000"
 android:previewImage="@drawable/preview_image"
 android:initialLayout="@layout/appwidget"
 android:configure="com.packtpub.androidcookbook.
 AppWidgetConfiguration"
 android:resizeMode="horizontal|vertical"
 android:widgetCategory="home_screen">
</appwidget-provider>

Here's a brief overview of the available attributes:

ff minWidth: The default width when placed on the Home screen

ff minHeight: The default height when placed on the Home screen

ff updatePeriodMillis: It's part of onUpdate() polling interval (in milliseconds)

ff initialLayout: The AppWidget layout

ff previewImage (optional): The image shown when browsing App Widgets

ff configure (optional): The activity to launch for configuration settings

ff resizeMode (optional): The flags indicate resizing options — horizontal,
vertical, none

ff minResizeWidth (optional): The minimum width allowed when resizing

ff minResizeHeight (optional): The minimum height allowed when resizing

ff widgetCategory (optional): Android 5+ only supports Home screen widgets

The AppWidgetProvider extends the BroadcastReceiver class, which is
why <receiver> is used when declaring the AppWidget in the Manifest. As it's
BroadcastReceiver, the class still receives the OS broadcast events, but the helper class
filters those events down to those applicable for an App Widget. The AppWidgetProvider
class exposes the following methods:

ff onUpdate(): It's called when initially created and at the interval specified.

ff onAppWidgetOptionsChanged(): It's called when initially created and any time
the size changes.

ff onDeleted(): It's called any time a widget is removed.

Exploring Fragments, AppWidgets, and the System UI

112

ff onEnabled(): It's called the first time a widget is placed (is not called when adding
a second and subsequent widgets).

ff onDisabled(): It's called when the last widget is removed.

ff onReceive(): It's called on every event received, including the preceding event.
Usually not overridden as the default implementation only sends the applicable
events.

The last required component is the layout. Remote Views only support a subset of the
available layouts. As an App Widget is a Remote View, only the following layouts are supported:

ff FrameLayout

ff LinearLayout

ff RelativeLayout

ff GridLayout

And the following widgets:

ff AnalogClock

ff Button

ff Chronometer

ff ImageButton

ff ImageView

ff ProgressBar

ff TextView

ff ViewFlipper

ff ListView

ff GridView

ff StackView

ff AdapterViewFlipper

Chapter 5

113

With the App Widget basics covered, it's now time to start coding. Our example will cover the
basics so you can expand the functionality as needed. This recipe uses a View with a clock,
which, when pressed, opens our activity.

This screenshot shows the widget in the widget list when adding to the Home screen:

The widget list appearance varies by launcher.

Exploring Fragments, AppWidgets, and the System UI

114

Here's a screenshot showing the widget after it is added to the Home screen:

Getting ready
Create a new project in Android Studio and call it: AppWidget. Use the default Phone &
Tablet options and select the Empty Activity option when prompted for the Activity Type.

How to do it...
We'll start by creating the widget layout, which resides in the standard layout resource
directory. Then we'll create the xml resource directory to store the AppWidgetProviderInfo
file. We'll add a new Java class and extend AppWidgetProvider, which handles the
onUpdate() call for the widget. With the receiver created, we can then add it to the
Android Manifest.

Chapter 5

115

Here are the detailed steps:

1.	 Create a new file in res/layout called widget.xml using the following XML:
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/
 apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <AnalogClock
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/analogClock"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true" />
</RelativeLayout>

2.	 Create a new directory called xml in the resource directory. The final result will be:
res/xml.

3.	 Create a new file in res/xml called appwidget_info,xml using the following xml:
<appwidget-provider xmlns:android="http://schemas.android.com/apk/
res/android"
 android:minWidth="40dp"
 android:minHeight="40dp"
 android:updatePeriodMillis="0"
 android:initialLayout="@layout/widget"
 android:resizeMode="none"
 android:widgetCategory="home_screen">
</appwidget-provider>

If you cannot see the new xml directory, switch from Android view
to Project view in the Project panel dropdown.

4.	 Create a new Java class called HomescreenWidgetProvider extending
AppWidgetProvider.

5.	 Add the following onUpdate() method to the HomescreenWidgetProvider class:
public void onUpdate(Context context, AppWidgetManager
 appWidgetManager, int[] appWidgetIds) {
 super.onUpdate(context, appWidgetManager,
 appWidgetIds);
 for (int count=0; count<appWidgetIds.length; count++) {
 RemoteViews appWidgetLayout = new
 RemoteViews(context.getPackageName(),
 R.layout.widget);

Exploring Fragments, AppWidgets, and the System UI

116

 Intent intent = new Intent(context,
 MainActivity.class);
 PendingIntent pendingIntent =
 PendingIntent.getActivity(context, 0, intent, 0);
 appWidgetLayout.setOnClickPendingIntent(
 R.id.analogClock, pendingIntent);
 appWidgetManager.updateAppWidget(
 appWidgetIds[count], appWidgetLayout);
 }
}

6.	 Add HomescreenWidgetProvider to AndroidManifest using the following XML
declaration within the <application> element:
<receiver android:name=".HomescreenWidgetProvider" >
 <intent-filter>
 <action android:name="android.appwidget.
 action.APPWIDGET_UPDATE" />
 </intent-filter>
 <meta-data android:name="android.appwidget.provider"
 android:resource="@xml/appwidget_info" />
</receiver>

7.	 Run the program on a device or emulator. After first running the application, the
widget will then be available to add to the Home screen.

How it works...
Our first step is to create the layout file for the widget. This is a standard layout resource with
the restrictions based on the App Widget being a Remote View, as discussed in the recipe
introduction. Though our example uses an Analog Clock widget, this is where you'd want to
expand the functionality based on your application needs.

The xml resource directory serves to store the AppWidgetProviderInfo, which defines
the default widget settings. The configuration settings determine how the widget is displayed
when initially browsing the available widgets. We use very basic settings for this recipe, but
they can easily be expanded to include additional features such as a preview image to show
a functioning widget and sizing options. The updatePeriodMillis attribute sets the
update frequency. Since the update will wake up the device, it's a trade-off between having
up-to-date data and battery life. (This is where the optional Settings Activity is useful to let
the user decide.)

The AppWidgetProvider class is where we handle the onUpdate() event triggered by the
updatePeriodMillis polling. Our example doesn't need any updating so we set the polling
to zero. The update is still called when initially placing the widget. The onUpdate() is where
we set the pending intent to open our app when the clock is pressed.

Chapter 5

117

Since the onUpdate() method is probably the most complicated aspect of AppWidgets,
we'll explain this is some detail. First, it's worth noting that onUpdate() will occur only
once each polling interval for all the widgets is created by this provider. (Widgets created
after the first will be on the cycle of the first widget.) This explains the for loop, as we need
it to iterate through all the existing widgets. This is where we create a pending intent to call
our app when the clock is pressed. As discussed earlier, an AppWidget is a Remote View.
Therefore, to get the layout, we call RemoteViews() with our fully qualified package name
and the layout ID. Once we have the layout, we can attach the pending intent to the clock
view using setOnClickPendingIntent(). We call the AppWidgetManager named
updateAppWidget() to initiate the changes we made.

The last step to make all this work is to declare the widget in the Android Manifest. We identify
the action we want to handle with the <intent-filter>. Most App Widgets will likely want
to handle the Update event, as ours does. The other item to note in the declaration is this line:

<meta-data android:name="android.appwidget.provider"
 android:resource="@xml/appwidget_info" />

This tells the system where to find our configuration file.

There's more...
Adding an App Widget configuration Activity allows greater flexibility with your widget. Not only
can you offer polling options, but you could offer different layouts, click behaviors, and so on.
Users tend to really appreciate flexible App Widgets.

Adding a configuration Activity requires a few additional steps. The Activity needs to be
declared in the Manifest as usual, but needs to include the APPWIDGET_CONFIGURE action,
as shown in this example:

<activity android:name=".AppWidgetConfigureActivity">
 <intent-filter>
 <action android:name=
 "android.appwidget.action.APPWIDGET_CONFIGURE"/>
 </intent-filter>
</activity>

The Activity also needs to be specified in the AppWidgetProviderInfo file using the
configure attribute, as shown in this example:

android:configure="com.packtpub.androidcookbook.appwidget.
AppWidgetConfigureActivity"

The configure attribute requires the fully qualified package name as this Activity will be
called from outside of your application.

Exploring Fragments, AppWidgets, and the System UI

118

Remember, the onUpdate() method will not be called when using
a configuration Activity. The configuration Activity is responsible for
handling any initial setup, if required.

See also
ff For App Widget Design Guidelines, visit Google's page at: http://developer.

android.com/design/patterns/widgets.html

Adding Search to the Action Bar
Along with the Action Bar, Android 3.0 introduced the SearchView widget, which can be
included as a menu item when creating a menu. This is now the recommended UI pattern
to provide a consistent user experience.

The following screenshot shows the initial appearance of the Search icon in the Action Bar:

This screenshot shows how the Search option expands when pressed:

If you want to add a Search functionality to your application, this recipe will walk you through
the steps to set up your User Interface and properly configure the Search Manager API.

Getting ready
Create a new project in Android Studio and call it: SearchView. Use the default Phone &
Tablet options and select Empty Activity when prompted for the Activity Type.

Chapter 5

119

How to do it...
To set up the Search UI pattern, we need to create the Search menu item and a resource
called searchable. We'll create a second activity to receive the search query. Then we'll
hook it all up in the AndroidManifest file. To get started, open the strings.xml file
in res/values and follow these steps:

1.	 Add the following string resources:
<string name="search_title">Search</string>
<string name="search_hint">Enter text to search</string>

2.	 Create the menu directory: res/menu.

3.	 Create a new menu resource called menu_options.xml in res/menu using the
following xml:
<?xml version="1.0" encoding="utf-8"?>
<menu
 xmlns:android="http://schemas.android.com/apk/
 res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">
 <item android:id="@+id/menu_search"
 android:title="@string/search_title"
 android:icon="@android:drawable/ic_menu_search"
 app:showAsAction="collapseActionView|ifRoom"
 app:actionViewClass=
 "android.support.v7.widget.SearchView" />
</menu>

4.	 Override onCreateOptionsMenu() to inflate the menu and set up the Search
Manager as follows:
public boolean onCreateOptionsMenu(Menu menu) {
 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.menu_options, menu);
 SearchManager searchManager = (SearchManager)
 getSystemService(Context.SEARCH_SERVICE);
 SearchView searchView = (SearchView)
 MenuItemCompat.getActionView(
 menu.findItem(R.id.menu_search));
 searchView.setSearchableInfo(
 searchManager.getSearchableInfo(getComponentName()));
 return true;
}

5.	 Create a new xml resource directory: res/xml.

Exploring Fragments, AppWidgets, and the System UI

120

6.	 Create a new file in the res/xml called searchable.xml using the following xml:
<?xml version="1.0" encoding="utf-8"?>
<searchable xmlns:android="http://schemas.android.com/
 apk/res/android"
 android:label="@string/app_name"
 android:hint="@string/search_hint" />

7.	 Crate a new layout called activity_search_result.xml using this xml:
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >
 <TextView
 android:id="@+id/textViewSearchResult"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerInParent="true" />
</RelativeLayout>

8.	 Create a new Activity called SearchResultActivity.

9.	 Add the following variable to the class:
TextView mTextViewSearchResult;

10.	 Change the onCreate() to load our layout, set the TextView and check for the
QUERY action:
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_search_result);
 mTextViewSearchResult = (TextView)findViewById(
 R.id.textViewSearchResult);

 if (Intent.ACTION_SEARCH.equals(
 getIntent().getAction())) {
 handleSearch(getIntent().getStringExtra(
 SearchManager.QUERY));
}

11.	 Add the following method to handle the search:
private void handleSearch(String searchQuery) {
 mTextViewSearchResult.setText(searchQuery);
}

Chapter 5

121

12.	 With the User Interface and code now complete, we just need to hook everything up
correctly in the AndroidManifest. Here is the complete manifest including both
activities:
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/
android"
 package="com.packtpub.androidcookbook.searchview" >
 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:supportsRtl="true"
 android:theme="@style/AppTheme" >
 <meta-data
 android:name="android.app.default_searchable"
 android:value=".SearchResultActivity" />
 <activity android:name=".MainActivity" >
 <intent-filter>
 <action android:name=
 "android.intent.action.MAIN" />
 <category android:name=
 "android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".SearchResultActivity" >
 <intent-filter>
 <action android:name=
 "android.intent.action.SEARCH" />
 </intent-filter>
 <meta-data android:name=
 "android.app.searchable" android:resource=
 "@xml/searchable" />
 </activity>
 </application>
</manifest>

13.	 Run the application on a device or emulator. Type in a search query and hit the
Search button (or press enter). The SearchResultActivity will display showing
the search query entered.

Exploring Fragments, AppWidgets, and the System UI

122

How it works...
Since the New Project Wizard uses the AppCompat library, our example uses the support
library API. Using the support library provides the greatest device compatibility as it allows
the use of modern features (such as the Action Bar) on older versions of the Android OS. This
can sometimes provide an extra challenge as often the official documentation focuses on
the framework API. Though usually the support library closely follows the framework API, they
are not always interchangeable. The Search UI pattern is one of those situations, so it's worth
paying extra attention to the steps outlined previously.

We start by creating string resources for the searchable, as declared in Step 6.

In Step 3, we create the menu resource, as we've done many times. One difference is that
we use the app namespace for the showAsAction and actionViewClass attributes. The
earlier versions of the Android OS don't include these attributes in their Android namespace.
This serves as a way to bring new functionality to older versions of the Android OS

In Step 4, we set up the SearchManager, again using the support library APIs.

Step 6 is where we define the searchable, which is an xml resource used by the
SearchManager. The only required attribute is the label, but the hint is recommended
so the user will have an idea of what they should type in the field.

The android:label must match the application name or the activity name
and must use a string resource (as it does not work with a hard-coded string).

Steps 7-11 are for the SearchResultActivity. Calling a second activity is not a
requirement of the SearchManager, but is commonly done to provide a single activity
for all searches initiated in your application.

If you ran the application at this point, you would see the search icon, but nothing would work.
Step 12 is where we put it all together in the AndroidManifest file. The first item to note is
the following:

<meta-data
android:name="android.app.default_searchable"
android:value=".SearchResultActivity" />

Notice this is in the application element and not in either of the <activity> elements.

We specify the searchable resource in the SearchResultActivity <meta-data>
element:

<meta-data android:name="android.app.searchable" android:resource="@
xml/searchable" />

Chapter 5

123

We also need to set the intent filter for SearchResultActivity as we do here:

<intent-filter>
 <action android:name="android.intent.action.SEARCH" />
</intent-filter>

The SearchManager broadcasts the SEARCH intent when the user initiates the search. This
declaration directs the intent to the SearchResultActivity activity. Once the search is
triggered, the query text is sent to the SearchResultActivity using the SEARCH intent.
We check for the SEARCH intent in the onCreate() and extract the query string using the
following code:

if (Intent.ACTION_SEARCH.equals(getIntent().getAction())) {
 handleSearch(getIntent().getStringExtra(SearchManager.QUERY));
}

You now have the Search UI pattern fully implemented. With the UI pattern complete, how you
handle the search is specific to your application needs. Depending on your application, you
might search a local database or maybe a web service.

See also
To take your search to the Internet, see Internet queries in Chapter 12, Telephony, Networks,
and the Web.

Showing your app full screen
Android 4.4 (API 19) introduced a UI feature called Immersive Mode. Unlike the previous full
screen flag, your app receives all the touch events while in Immersive Mode. This mode is
ideal for certain activities, such as reading books and news, full-screen drawing, gaming, or
watching a video. There are several different approaches to full screen, and each have a best
use case:

ff Reading books/articles, and so on: Immersive Mode with easy access to the
system UI

ff Game/Drawing app: Immersive Mode for full screen use but minimal system UI

ff Watching video: Full screen and normal system UI

The key difference between the modes is how the System UI responds. In the first two
scenarios, your app is expecting user interaction, so the System UI is hidden to make it easier
for your user (such as not hitting the back button while playing a game). While using full
screen with a normal system UI, such as watching a video, you wouldn't expect your user to
use the screen at all, so when they do, the system UI should respond normally. In all modes,
the user can bring back the System UI with a swipe inward across the hidden System Bar.

Exploring Fragments, AppWidgets, and the System UI

124

Since watching a video doesn't require the new Immersive Mode, full-screen mode can be
achieved using the two flags: SYSTEM_UI_FLAG_FULLSCREEN and SYSTEM_UI_FLAG_
HIDE_NAVIGATION, available since Android 4.0 (API 14).

Our recipe will demonstrate setting up Immersive Mode. We're also going to add the ability to
toggle the System UI with a tap on the screen.

Getting ready
Create a new project in Android Studio and call it: ImmersiveMode. Use the default Phone &
Tablet options and select Empty Activity when prompted for the Activity Type. When selecting
the Minimum API Level, choose API 19 or higher.

How to do it...
We'll create two functions for handling the system UI visibility, then we'll create a gesture listener
to detect the screen tap. All the steps for this recipe are adding code to MainActivity.java,
so open the file and let's begin:

1.	 Add the following method to hide the System UI:
private void hideSystemUi() {
 getWindow().getDecorView().setSystemUiVisibility(
 View.SYSTEM_UI_FLAG_IMMERSIVE |
 View.SYSTEM_UI_FLAG_FULLSCREEN |
 View.SYSTEM_UI_FLAG_LAYOUT_STABLE |
 View.SYSTEM_UI_FLAG_LAYOUT_HIDE_NAVIGATION |
 View.SYSTEM_UI_FLAG_LAYOUT_FULLSCREEN |
 View.SYSTEM_UI_FLAG_HIDE_NAVIGATION);
}

2.	 Add the following method to show the System UI:
private void showSystemUI() {
 getWindow().getDecorView().setSystemUiVisibility(
 View.SYSTEM_UI_FLAG_LAYOUT_STABLE |
 View.SYSTEM_UI_FLAG_LAYOUT_HIDE_NAVIGATION |
 View.SYSTEM_UI_FLAG_LAYOUT_FULLSCREEN);
}

3.	 Add the following class variable:
private GestureDetectorCompat mGestureDetector;

Chapter 5

125

4.	 Add the following GestureListener class at the class level, below the previous
class variable:
private class GestureListener extends
 GestureDetector.SimpleOnGestureListener {
 @Override
 public boolean onDown(MotionEvent event) {
 return true;
 }

 @Override
 public boolean onFling(MotionEvent event1, MotionEvent
 event2, float velocityX, float velocityY) {
 return true;
 }

 @Override
 public boolean onSingleTapUp(MotionEvent e) {
 if (getSupportActionBar()!= null &&
 getSupportActionBar().isShowing()) {
 hideSystemUi();
 } else {
 showSystemUI();
 }
 return true;
 }
}

5.	 Override the onTouchEvent() callback with the following:
public boolean onTouchEvent(MotionEvent event){
 mGestureDetector.onTouchEvent(event);
 return super.onTouchEvent(event);
}

6.	 Add the following code to the onCreate() method to set the GestureListener
and hide the System UI:
mGestureDetector = new GestureDetectorCompat(this, new
 GestureListener());
hideSystemUi();

7.	 Run the application on a device or emulator. Swiping inward across a hidden System
Bar will show the System UI. Tapping the screen will toggle the System UI.

Exploring Fragments, AppWidgets, and the System UI

126

How it works...
We create the showSystemUI() and hideSystemUI() methods by using
setSystemUiVisibility() on the application window. The flags we set (and don't set)
control what is visible and what is hidden. When we set the visibility without the SYSTEM_UI_
FLAG_IMMERSIVE flag, we in effect, disable Immersive Mode.

If all we wanted to do was hide the System UI, we could just add hideSystemUI() to
onCreate() and we'd be done. The problem is it wouldn't stay hidden. Once the user
exited Immersive Mode, it would stay in the regular display mode. That's why we created
the GestureListener. (We'll discuss gestures again in Chapter 8, Using the Touchscreen
and Sensors.) Since we only want to respond to the onSingleTapUp() gesture, we don't
implement the full range of gestures. When onSingleTapUp is detected, we toggle the
System UI.

There's more...
Let's look at some of the other important tasks that can be performed:

Sticky Immersion
There's another option we can use if we want the System UI to stay hidden automatically.
Instead of using SYSTEM_UI_FLAG_IMMERSIVE to hide the UI, we can use SYSTEM_UI_
FLAG_IMMERSIVE_STICKY.

Dimming the System UI
If all you need is to reduce the visibility of the Navigation bar, there's also SYSTEM_UI_FLAG_
LOW_PROFILE to dim the UI.

Use this flag with the same setSystemUiVisibility() call as the Immersive Mode flag:

getWindow().getDecorView().setSystemUiVisibility(View.SYSTEM_UI_FLAG_
LOW_PROFILE);

Call setSystemUiVisibility() with 0 to clear all flags:

getWindow().getDecorView().setSystemUiVisibility(0);

Chapter 5

127

Setting the Action Bar as an Overlay
If you just need to hide or show the Action Bar, use these methods:

getActionBar().hide();
getActionBar().show();

One problem with this approach is that the system resizes the layout each time either method
is called. Instead, you might want to consider using a theme option to make the System UI
behave as an overlay. To enable overlay mode, add the following to the theme:

<item name="android:windowActionBarOverlay">true</item>

Translucent system bars
These two themes enable the translucent settings:

Theme.Holo.NoActionBar.TranslucentDecor
Theme.Holo.Light.NoActionBar.TranslucentDecor

If you are creating your own theme, use the following theme settings:

<item name="android:windowTranslucentNavigation">true</item>
<item name="android:windowTranslucentStatus">true</item>

See also
The Recognizing a gesture recipe in Chapter 8, Using the Touchscreen and Sensors.

129

6
Working with Data

In this chapter, we will cover the following topics:

ff Storing simple data

ff Read and write a text file to internal storage

ff Read and write a text file to external storage

ff Including resource files in your project

ff Creating and using an SQLite database

ff Access data in the background using a Loader

Introduction
Since almost any application, big or small, requires saving some kind of data, Android offers
many options. From saving a simple value to creating full databases using SQLite, storage
options include the following:

ff Shared preferences: simple name/value pairs

ff Internal storage: data files in private storage

ff External storage: data files in private or public storage

ff SQLite database: private data can expose the data through a Content Provider

ff Cloud storage: Private server or Service Provider

Working with Data

130

There are benefits and tradeoffs to using internal and external storage. We will list some of
the differences here to help you decide whether to use internal or external storage:

ff Internal storage:

�� Unlike external storage, internal storage is always available, but generally
has less free space

�� Files are not accessible to the user (unless the device has root access)

�� Files are automatically deleted when your app is uninstalled (or with the
Clear Cache/Cleanup File option in the App Manager)

ff External storage:

�� The device may not have external storage or it may be inaccessible (such as
when it's connected to a computer)

�� Files are accessible to the user (and other apps) without requiring root
access

�� Files are not deleted when your app is uninstalled (unless you use
getExternalFilesDir() to get app-specific public storage)

In this chapter, we will demonstrate working with shared preferences, internal and external
storage, and SQLite databases. For cloud storage, take a look at the Internet recipes in
Chapter 12, Telephony, Networks, and the Web and Online Service Providers in Chapter 15,
Backend as a Service Options.

Storing simple data
It's a common requirement to store simple data, and Android makes it simple using the
Preferences API. It's not limited to just user preferences either; you can store any of the
primitive data types using a name/value pair.

Chapter 6

131

We'll demonstrate saving a name from an EditText and displaying it when the application
starts. The following screenshot shows how the application looks the first time with no saved
name, and then on startup, after a name is saved:

Working with Data

132

Getting ready
Create a new project in Android Studio and call it: Preferences. Use the default
Phone & Tablet options and select Empty Activity when prompted for the Activity Type.

How to do it...
We'll use the existing TextView to display a Welcome back message and create a new
EditText button to save the name. Start by opening activity_main.xml:

1.	 Replace the existing TextView and add the following new views:
<TextView
 android:id="@+id/textView"
 android:text="Hello World!"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

<EditText
 android:id="@+id/editTextName"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true"
 android:hint="Enter your name" />

<Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Save"
 android:layout_centerHorizontal="true"
 android:layout_below="@id/editTextName"
 android:onClick="saveName"/>

2.	 Open ActivityMain.java and add the following global declarations:
private final String NAME="NAME";
private EditText mEditTextName;

Chapter 6

133

3.	 Add the following code to onCreate() to save a reference to the EditText and to
load any saved name:
TextView textView = (TextView)findViewById(R.id.textView);
SharedPreferences sharedPreferences = getPreferences(
 MODE_PRIVATE);
String name = sharedPreferences.getString(NAME,null);
if (name==null) {
 textView.setText("Hello");
} else {
 textView.setText("Welcome back " + name + "!");
}
mEditTextName = (EditText)findViewById(R.id.editTextName);

4.	 Add the following saveName() method:
public void saveName(View view) {
 SharedPreferences.Editor editor =
 getPreferences(MODE_PRIVATE).edit();
 editor.putString(NAME, mEditTextName.getText().
 toString());
 editor.commit();
}

5.	 Run the program on a device or emulator. Since we are demonstrating persisting
data, it loads the name during the onCreate(), so save a name and restart the
program to see it load.

How it works...
To load the name, we first get a reference to SharedPreference so we can call the
getString() method. We pass in the key for our name/value pair and the default
value to return if the key is not found.

To save the preference, we first need to get a reference to the Preference Editor.
We use putString() and follow it with commit(). Without commit(), the change
will not be saved.

There's more...
Our example stores all the preferences in a single file. We can also store preferences in
different files using getSharedPreferences() and passing in the name. This option
can be used if you want to have separate profiles for multiple users.

Working with Data

134

Read and write a text file to internal storage
When simple name/value pairs are not sufficient, Android also supports regular file operations
including working with text and binary data.

The following recipe demonstrates how to read and write a file to internal or private storage.

Getting ready
Create a new project in Android Studio and call it: InternalStorageFile. Use the default
Phone & Tablet options and select Empty Activity when prompted for the Activity Type.

How to do it...
To demonstrate both reading and writing text, we'll need a layout with an EditText and
two buttons. Start by opening main_activity.xml and follow these steps:

1.	 Replace the existing <TextView> element with the following views:
<EditText
 android:id="@+id/editText"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:inputType="textMultiLine"
 android:ems="10"
 android:layout_above="@+id/buttonRead"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true" />
<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Read"
 android:id="@+id/buttonRead"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true"
 android:onClick="readFile"/>
<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Write"
 android:id="@+id/buttonWrite"
 android:layout_below="@+id/buttonRead"
 android:layout_centerHorizontal="true"
 android:onClick="writeFile"/>

Chapter 6

135

2.	 Now open ActivityMain.java and add the following global variables:
private final String FILENAME="testfile.txt";
EditText mEditText;

3.	 Add the following to the onCreate() method, after setContentView ():
mEditText = (EditText)findViewById(R.id.editText);

4.	 Add the following writeFile() method:
public void writeFile(View view) {
 try {
 FileOutputStream fileOutputStream =
 openFileOutput(FILENAME, Context.MODE_PRIVATE);
 fileOutputStream.write(
 mEditText.getText().toString().getBytes());
 fileOutputStream.close();
 } catch (java.io.IOException e) {
 e.printStackTrace();
 }
}

5.	 Now add the readFile() method:
public void readFile(View view) {
 StringBuilder stringBuilder = new StringBuilder();
 try {
 InputStream inputStream = openFileInput(FILENAME);
 if (inputStream != null) {
 InputStreamReader inputStreamReader = new
 InputStreamReader(inputStream);
 BufferedReader bufferedReader = new
 BufferedReader(inputStreamReader);
 String newLine = null;
 while ((newLine = bufferedReader.readLine()) !=
 null) {
 stringBuilder.append(newLine+"\n");
 }
 inputStream.close();
 }
 } catch (java.io.IOException e) {
 e.printStackTrace();
 }
 mEditText.setText(stringBuilder);
}

6.	 Run the program on a device or emulator.

Working with Data

136

How it works...
We use the InputStream and FileOutputStream classes to read and write,
respectively. Writing to the file is as simple as getting the text from the EditText
and calling the write() method.

Reading back the contents is a little more involved. We could use the FileInputStream
class for reading, but when working with text, the helper classes make it easier. In our
example, we open the file with openFileInput(), which returns an InputStream object.
We then use the InputStream to get a BufferedReader, which offers the ReadLine()
method. We loop through each line in the file and append it to our StringBuilder. When
we're finished reading the file, we assign the text to the EditText.

Our previous file was created in the app's private data folder.
To view the contents of the file, you can use the Android Device
Monitor to pull the file to your computer. The full file path is:
/data/data/com.packtpub.androidcookbook.
internalstoragetile/files/testfile.txt.

The following screenshot shows how the file appears when viewed through the Android
Device Monitor:

Chapter 6

137

You will need a device with root access to view the private folder
shown previously.

There's more...
Let's see some additional information that can be helpful.

Cache Files
If all you need is to temporarily store data, you can also use the cache folder. The following
method returns the cache folder as a File object (the next recipe demonstrates working
with the File object):

getCacheDir()

The main benefit of the cache folder is that the system can clear the cache if running low on
storage space. (The user can also clear the cache folder from Apps Management in Settings.)

For example, if your app downloads news articles, you could store those in the cache. When
your app starts, you can display the news already downloaded. These are files that are not
required to make your app work. If the system is low on resources, the cache can be cleared
without adversely affecting your app. (Even though the system may clear the cache, it's still
a good idea for your app to remove old files as well.)

See also
ff The next recipe, Read and write a text file to external storage.

Read and write a text file to external
storage

The process of reading and writing files to external storage is basically the same as using
internal storage. The difference is in obtaining a reference to the storage location. Also, as
mentioned in the Introduction, external storage may not be available, so it's best to check
availability before attempting to access it.

This recipe will read and write a text file, as we did in the previous recipe. We'll also
demonstrate how to check the external storage state before we access it.

Working with Data

138

Getting ready
Create a new project in Android Studio and call it: ExternalStorageFile. Use the default
Phone & Tablet options and select Empty Activity when prompted for the Activity Type. We
will use the same layout as the previous recipe, so you can just copy and paste if you typed it
in already. Otherwise, use the layout from Step 1 in the previous recipe, Read and write a text
file to internal storage.

How to do it...
As mentioned previously in the Getting ready section, we'll use the layout from the previous
recipe. With the layout file done, the first step will be to add permission to access the write to
external storage. Here are the steps:

1.	 Open the Android Manifest and add the following permission:
<uses-permission android:name=
 "android.permission.WRITE_EXTERNAL_STORAGE" />

2.	 Next, open ActivityMain.java and add the following global variables:

private final String FILENAME="testfile.txt";
EditText mEditText;

3.	 Add the following to the onCreate() method, after setContentView ():
mEditText = (EditText)findViewById(R.id.editText);

4.	 Add the following two methods to check the storage state:
public boolean isExternalStorageWritable() {
 if (Environment.MEDIA_MOUNTED.equals(
 Environment.getExternalStorageState())) {
 return true;
 }
 return false;
}

public boolean isExternalStorageReadable() {
 if (Environment.MEDIA_MOUNTED.equals(
 Environment.getExternalStorageState()) ||
 Environment.MEDIA_MOUNTED_READ_ONLY.
equals(Environment.getExternalStorageState())) {
 return true;
 }
 return false;
}

Chapter 6

139

5.	 Add the following writeFile() method:
public void writeFile(View view) {
 if (isExternalStorageWritable()) {
 try {
 File textFile = new File(
 Environment.getExternalStorageDirectory(),
 FILENAME);
 FileOutputStream fileOutputStream = new
 FileOutputStream(textFile);
 fileOutputStream.write(mEditText.getText().
 toString().getBytes());
 fileOutputStream.close();
 } catch (java.io.IOException e) {
 e.printStackTrace();
 Toast.makeText(this, "Error writing file",
 Toast.LENGTH_LONG).show();
 }
 } else {
 Toast.makeText(this, "Cannot write to External
 Storage", Toast.LENGTH_LONG).show();
 }
}

6.	 Add the following readFile()method:
public void readFile(View view) {
 if (isExternalStorageReadable()) {
 StringBuilder stringBuilder = new StringBuilder();
 try {
 File textFile = new File(
 Environment.getExternalStorageDirectory(),
 FILENAME);
 FileInputStream fileInputStream = new
 FileInputStream(textFile);
 if (fileInputStream != null) {
 InputStreamReader inputStreamReader = new
 InputStreamReader(fileInputStream);
 BufferedReader bufferedReader = new
 BufferedReader(inputStreamReader);
 String newLine = null;
 while ((newLine =
 bufferedReader.readLine()) != null) {
 stringBuilder.append(newLine+"\n");
 }

Working with Data

140

 fileInputStream.close();
 }
 mEditText.setText(stringBuilder);
 } catch (java.io.IOException e) {
 e.printStackTrace();
 Toast.makeText(this, "Error reading
 file", Toast.LENGTH_LONG).show();
 }
 } else {
 Toast.makeText(this, "Cannot read External
 Storage", Toast.LENGTH_LONG).show();
 }
}

7.	 Run the program on a device or emulator with external storage.

How it works...
Reading and writing files are basically the same for both internal and external storage. The
main difference is that we should check for the availability of the external storage before
attempting to access it, which we do with the isExternalStorageWritable() and
isExternalStorageReadable() methods. When checking the storage state, MEDIA_
MOUNTED means we can read and write to it.

Unlike the internal storage example, we request the working path as we do in this line of code:

File textFile = new File(
 Environment.getExternalStorageDirectory(), FILENAME);

The actual reading and writing is done with the same classes, as it is just the location that is
different.

It is not safe to hard code an external folder path. The path can vary between
versions of the OS and especially between hardware manufacturers. It is
always best to call getExternalStorageDirectory(), as shown.

There's more...
Some additional information are discussed as follows.

Chapter 6

141

Getting public folders
The getExternalStorageDirectory() method returns the root folder of the external
storage. If you want to obtain specific public folders, such as the Music or Ringtone folder,
use getExternalStoragePublicDirectory() and pass in the desired folder type,
for example:

getExternalStoragePublicDirectory(Environment.DIRECTORY_MUSIC)

Checking available space
One issue consistent between internal and external storage is limited space. If you know how
much space you will need ahead of time, you can call the getFreeSpace() method on the
File object. (getTotalSpace() will return the total space.) Here is a simple example to
using the call to getFreeSpace():

if (Environment.getExternalStorageDirectory().getFreeSpace() <
RQUIRED_FILE_SPACE) {
 //Not enough space
} else {
 //We have enough space
}

Deleting a file
There are many helper methods available through the File object, including deleting
a file. If we wanted to delete the text file we created in the example, we could call
delete() as follows:

textFile.delete()

Working with directories
Though it's called a File object, it supports directory commands as well, such as making
and removing directories. If you want to make or remove a directory, build the File object,
then call the respective methods: mkdir() and delete(). (There's also a method called
mkdirs() (plural) that will create parent folders as well.) See the following link for a
complete list.

Preventing files from being included in galleries
Android employs a media scanner that automatically includes sound, video, and image
files in the system collections, such as the Image Gallery. To exclude your directory, create an
empty file called .nomedia (note the preceding period) in the same directory as the files you
wish to exclude.

Working with Data

142

See also
ff For a complete list of methods available in the File class, visit

http://developer.android.com/reference/java/io/File.html

Including resource files in your project
Android provides two options for including files in your project: the raw folder and the Assets
folder. Which option you use depends on your requirements. To start, we'll give a brief
overview of each option to help you decide when to use each option:

ff Raw files

�� Included in the resource directory: /res/raw

�� As a resource, accessed through the raw identifier: R.raw.<resource>

�� A good place for storing media files such as MP3, MP4, and OOG files

ff Asset files

�� Creates a filesystem compiled in your APK (does NOT provide a resource ID)

�� Access files using their file names, generally making them easier to use with
dynamically created names

�� Some APIs do not support a Resource Identifier and therefore require
including as an Asset

Generally, raw files are easier to work with since they are accessed through the resource
identifier. As we'll demonstrate in this recipe, the main difference is how you access the file. In
this example, we will load both a raw text file and an asset text file and display the contents.

Getting ready
Create a new project in Android Studio and call it: ReadingResourceFiles. Use the default
Phone & Tablet options and select Empty Activity when prompted for the Activity Type.

Chapter 6

143

How to do it...
To demonstrate reading content from both resource locations, we'll create a split layout. We
also need to create both resource folders as they are not included in the default Android
project. Here are the steps:

1.	 Open activity_main.xml and replace the contents with the following layout:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/
 apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">
 <TextView
 android:id="@+id/textViewRaw"
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1"
 android:gravity=
 "center_horizontal|center_vertical"/>
 <TextView
 android:id="@+id/textViewAsset"
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="1"
 android:gravity=
 "center_horizontal|center_vertical"/>
</LinearLayout>

2.	 Create the raw resource folder in the res folder. It will read as: res/raw.

3.	 Create a new text file by right-clicking on the raw folder and select New | File. Name
the file raw_text.txt and type some text in the file. (This text will display when you
run the application.)

Working with Data

144

4.	 Create the asset folder. The asset folder is trickier because of the location.
Fortunately, Android Studio provides a menu option that makes creating it very easy.
Go to the File menu (or right-click on the app node) and select New | Folder | Assets
Folder as shown in this screenshot:

5.	 Create another text file in the asset folder called asset_text.txt. Again, whatever
text you type here will be shown when you run the app. Here's how the final result
should look after both text files are created:

Chapter 6

145

6.	 Now it's time for the code. Open MainActivity.java and add the following
method to read the text file (which is passed into the method):
private String getText(InputStream inputStream) {
 StringBuilder stringBuilder = new StringBuilder();
 try {;
 if (inputStream != null) {
 InputStreamReader inputStreamReader = new
 InputStreamReader(inputStream);
 BufferedReader bufferedReader = new
 BufferedReader(inputStreamReader);
 String newLine = null;
 while ((newLine = bufferedReader.readLine()) !=
 null) {
 stringBuilder.append(newLine+"\n");
 }
 inputStream.close();
 }
 } catch (java.io.IOException e) {
 e.printStackTrace();
 }
 return stringBuilder.toString();
}

Working with Data

146

7.	 Finally, add the following code to the onCreate() method:
TextView textViewRaw =
 (TextView)findViewById(R.id.textViewRaw);
textViewRaw.setText(getText(this.getResources().
 openRawResource(R.raw.raw_text)));

TextView textViewAsset =
 (TextView)findViewById(R.id.textViewAsset);
try {
 textViewAsset.setText(getText(this.getAssets().open(
 "asset_text.txt")));
} catch (IOException e) {
 e.printStackTrace();
}

8.	 Run the program on a device or emulator.

How it works...
To summarize, the only difference is in how we get a reference to each file. This line of code
reads the raw resource:

this.getResources().openRawResource(R.raw.raw_text)

And this code reads the asset file:

this.getAssets().open("asset_text.txt")

Both calls return an InputStream, which the getText() method uses to read the file
contents. It is worth noting, though, that the call to open the asset text file requires an
additional try/catch. As noted in the recipe introduction, resources are indexed so
we have compile time verification, which the asset folder does not have.

There's more...
A common approach is to include resources in your APK, but download new resources as
they become available. (See the network communication in Chapter 12, Telephony, Networks,
and the Web.) If new resources aren't available, you can always fall back on the resources in
your APK.

Chapter 6

147

See also
ff Network communication recipes in Chapter 12, Telephony, Networks, and the Web.

Creating and using an SQLite database
In this recipe, we're going to demonstrate working with an SQLite database. If you are already
familiar with SQL databases from other platforms, then much of what you know will apply.
If you are new to SQLite, take a look at the reference links in the "See also" section as this
recipe assumes a basic understanding of database concepts including schemas, tables,
cursors, and raw SQL.

To get you up and running with an SQLite database quickly, our example implements the basic
CRUD operations. Generally, when creating a database in Android, you create a class that
extends SQLiteOpenHelper, which is where your database functionality is implemented.
Here is a list of the functions to provide each of the basic operations:

ff Create: insert()

ff Read: query() and rawQuery()

ff Update: update()

ff Delete: delete()

To demonstrate a fully working database, we will create a simple Dictionary database, so
we can store words and their definitions. We'll demonstrate the CRUD operations by allowing
adding new words (with their definitions) and updating existing word definitions. We'll show
words in a ListView using a cursor. Pressing a word in the ListView will read the definition
from the database and display it in a Toast message. A long press will delete the word.

Getting ready
Create a new project in Android Studio and call it: SQLiteDatabase. Use the default Phone
& Tablet options and select Empty Activity when prompted for the Activity Type.

Working with Data

148

How to do it...
First, we'll create the UI, which will consist of two EditText fields, a button, and a ListView.
As we add words to the database, they will populate the ListView. To start,
open activity_main.xml and follow these steps:

1.	 Replace the existing <TextView> with these new views:
<EditText
 android:id="@+id/et_word"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentTop="true"
 android:layout_alignParentLeft="true"
 android:layout_alignParentStart="true"
 android:hint="Word"/>
<EditText
 android:id="@+id/et_definition"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_below="@+id/editTextWord"
 android:layout_alignParentLeft="true"
 android:layout_alignParentStart="true"
 android:hint="Definition"/>
<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Save"
 android:id="@+id/button_add_update"
 android:layout_alignParentRight="true"
 android:layout_alignParentTop="true" />
<ListView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/listView"
 android:layout_below="@+id/et_definition"
 android:layout_alignParentLeft="true"
 android:layout_alignParentBottom="true" />

Chapter 6

149

2.	 Add a new Java class to the project named DictionaryDatabase. This class
extends from SQLiteOpenHelper and handles all the SQLite functions. Here is
the class declaration:
public class DictionaryDatabase extends SQLiteOpenHelper {

3.	 Below the declaration, add the following constants:
private static final String DATABASE_NAME =
 "dictionary.db";
private static final String TABLE_DICTIONARY =
 "dictionary";

private static final String FIELD_WORD = "word";
private static final String FIELD_DEFINITION =
 "definition";
private static final int DATABASE_VERSION = 1;

4.	 Add the following constructor, OnCreate() and onUpgrade() methods:
DictionaryDatabase(Context context) {
 super(context, DATABASE_NAME, null, DATABASE_VERSION);
}

@Override
public void onCreate(SQLiteDatabase db) {
 db.execSQL("CREATE TABLE " + TABLE_DICTIONARY +
 "(_id integer PRIMARY KEY," +
 FIELD_WORD + " TEXT, " +
 FIELD_DEFINITION + " TEXT);");
}

@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion,
 int newVersion) {
 //Handle database upgrade as needed
}

5.	 The following methods are responsible for creating, updating, and deleting the
records:
public void saveRecord(String word, String definition) {
 long id = findWordID(word);
 if (id>0) {
 updateRecord(id, word,definition);
 } else {

Working with Data

150

 addRecord(word,definition);
 }
}

public long addRecord(String word, String definition) {
 SQLiteDatabase db = getWritableDatabase();

 ContentValues values = new ContentValues();
 values.put(FIELD_WORD, word);
 values.put(FIELD_DEFINITION, definition);
 return db.insert(TABLE_DICTIONARY, null, values);
}

public int updateRecord(long id, String word, String definition) {
 SQLiteDatabase db = getWritableDatabase();
 ContentValues values = new ContentValues();
 values.put("_id", id);
 values.put(FIELD_WORD, word);
 values.put(FIELD_DEFINITION, definition);
 return db.update(TABLE_DICTIONARY, values, "_id = ?",
 new String[]{String.valueOf(id)});
}
public int deleteRecord(long id) {
 SQLiteDatabase db = getWritableDatabase();
 return db.delete(TABLE_DICTIONARY, "_id = ?", new
 String[]{String.valueOf(id)});
}

6.	 And these methods handle reading the information from the database:
public long findWordID(String word) {
 long returnVal = -1;
 SQLiteDatabase db = getReadableDatabase();
 Cursor cursor = db.rawQuery(
 "SELECT _id FROM " + TABLE_ DICTIONARY +
 " WHERE " + FIELD_WORD + " = ?", new String[]{word});
 Log.i("findWordID","getCount()="+cursor.getCount());
 if (cursor.getCount() == 1) {
 cursor.moveToFirst();
 returnVal = cursor.getInt(0);
 }
 return returnVal;
}

Chapter 6

151

public String getDefinition(long id) {
 String returnVal = "";
 SQLiteDatabase db = getReadableDatabase();
 Cursor cursor = db.rawQuery(
 "SELECT definition FROM " + TABLE_ DICTIONARY +
 " WHERE _id = ?", new String[]{String.valueOf(id)});
 if (cursor.getCount() == 1) {
 cursor.moveToFirst();
 returnVal = cursor.getString(0);
 }
 return returnVal;
}

public Cursor getWordList() {
 SQLiteDatabase db = getReadableDatabase();
 String query = "SELECT _id, " + FIELD_WORD +
 " FROM " + TABLE_DICTIONARY + " ORDER BY " + FIELD_WORD +
 " ASC";
 return db.rawQuery(query, null);
}

7.	 With the database class finished, open MainActivity.java. Add the following
global variables below the class declaration:
EditText mEditTextWord;
EditText mEditTextDefinition;
DictionaryDatabase mDB;
ListView mListView;

8.	 Add the following method to save the fields when the button is clicked:
private void saveRecord() {
 mDB.saveRecord(mEditTextWord.getText().toString(),
 mEditTextDefinition.getText().toString());
 mEditTextWord.setText("");
 mEditTextDefinition.setText("");
 updateWordList();
}

9.	 Add this method to populate the ListView:
private void updateWordList() {
 SimpleCursorAdapter simpleCursorAdapter = new
 SimpleCursorAdapter(
 this,
 android.R.layout.simple_list_item_1,
 mDB.getWordList(),

Working with Data

152

 new String[]{"word"},
 new int[]{android.R.id.text1},
 0);
 mListView.setAdapter(simpleCursorAdapter);
}

10.	 Finally, add the following code to onCreate():
mDB = new DictionaryDatabase(this);

mEditTextWord = (EditText)findViewById(R.id.editTextWord);
mEditTextDefinition =
 (EditText)findViewById(R.id.editTextDefinition);

Button buttonAddUpdate =
 (Button)findViewById(R.id.buttonAddUpdate);
buttonAddUpdate.setOnClickListener(new
 View.OnClickListener() {
 @Override
 public void onClick(View v) {
 saveRecord();
 }
});

mListView = (ListView)findViewById(R.id.listView);
mListView.setOnItemClickListener(new
 AdapterView.OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView<?> parent, View
 view, int position, long id) {
 Toast.makeText(MainActivity.this,
 mDB.getDefinition(id),Toast.LENGTH_SHORT).show();
 }
});
mListView.setOnItemLongClickListener(new
 AdapterView.OnItemLongClickListener() {
 @Override
 public boolean onItemLongClick(AdapterView<?> parent,
 View view, int position, long id) {
 Toast.makeText(MainActivity.this,
 "Records deleted = " + mDB.deleteRecord(id),
 Toast.LENGTH_SHORT).show();
 updateWordList();
 return true;
 }
});
updateWordList();

11.	 Run the program on a device or emulator and try it out.

Chapter 6

153

How it works...
We'll start by explaining the DictionaryDatabase class as that's the heart of an SQLite
database. The first item to note is the constructor:

DictionaryDatabase(Context context) {

 super(context, DATABASE_NAME, null, DATABASE_VERSION);

}

Notice DATABASE_VERSION? Only when you make changes to your database schema do you
need to increment this value.

Next is onCreate(), where the database is actually created. This is only called the first time
the database is created, not each time the class is created. It's also worth noting the _id
field. Android does not require tables to have a primary field, except for some classes such
as SimpleCursorAdapter, require _id.

We're required to implement the onUpgrade() callback, but as this is a new database,
there's nothing to do. This method will be called when the database version is incremented.

The saveRecord() method handles calling addRecord() or updateRecord(),
as appropriate. Since we are going to modify the database, both methods call
getWritableDatabase() so we can make changes. A writeable database requires
more resources so if you don't need to make changes, get a read-only database instead.

The last method to note is getWordList(), which returns all the words in the database
using a cursor object. We use this cursor to populate the ListView, which brings us to
ActivityMain.java. The onCreate() method does the standard initialization we've
seen before and also creates an instance of the database with the following line of code:

mDB = new DictionaryDatabase(this);

The onCreate() method is also where we set up the events to show the word definition
(with a Toast) when an item is pressed and to delete the word on a long press. Probably
the most complicated code is in updateWordList().

This isn't the first time we've used an adapter, but this is the first cursor adapter, so we'll
explain. We use the SimpleCursorAdapter to create a mapping between our field in the
cursor and the ListView item. We use the layout.simple_list_item_1 layout, which
only includes a single text field with ID android.R.id.text1. In a real application, we'd
probably create a custom layout and include the definition in the ListView item, but we
wanted to demonstrate a method to read the definition from the database.

We call updateWordList() in three places—during onCreate() to create the initial list,
then again after we add/update a list, and lastly when deleting a list.

Working with Data

154

There's more...
Though this is a fully functioning example of SQLite, it is still just the basics. A whole book can,
and has, been written on SQLite for Android.

Upgrading a database
As we mentioned previously, when we increment the database version, the onUpgrade()
method will be called. What you do here is dependent on the change(s). If you changed an
existing table, ideally you'll want to migrate the user data to the new format by querying the
existing data and inserting it into the new format. Keep in mind, there is no guarantee the user
will upgrade in consecutive order—so they could jump from version 1 to version 4, for example.

See also
ff SQLite Home Page: https://www.sqlite.org/

ff SQLite Database Android Reference: http://developer.android.com/
reference/android/database/sqlite/SQLiteDatabase.html

Access data in the background using a
Loader

Any potentially long-running operations should not be done on the UI thread, as this can
cause your application to be slow or become non-responsive. The Android OS will bring
up the Application Not Responding (ANR) dialog when apps become non-responsive.

Since querying databases can be time-consuming, Android introduced the Loader API in
Android 3.0. A Loader processes the query on a background thread and notifies the UI
thread when it finishes.

The two primary benefits to Loaders include:

ff Querying the database is (automatically) handled on a background thread

ff The Query auto-updates (when using a Content Provider data source)

To demonstrate a Loader, we will modify the previous SQLite database example to use a
CursorLoader to populate the ListView.

Chapter 6

155

Getting ready
We will use the project from the previous example, Creating and using an SQLite database,
as the base for this recipe. Create a new project in Android Studio and call it: Loader. Use
the default Phone & Tablet options and select Empty Activity when prompted for the Activity
Type. Copy the DictionaryDatabase class and the layout from the previous recipe. Though
we will use parts of the previous ActivityMain.java code, we will start at the beginning in
this recipe to make it easier to follow.

How to do it...
With the project set up as described previously, we will start by creating two new Java classes,
and then tie it all together in ActivityMain.java. Here are the steps:

1.	 Create a new Java class called DictionaryAdapter that extends
CursorAdapter. This class replaces the SimpleCursorAdapater
we used in the previous recipe. Here is the full code:
public class DictionaryAdapter extends CursorAdapter {
 public DictionaryAdapter(Context context, Cursor c,
 int flags) {
 super(context, c, flags);
 }

 @Override
 public View newView(Context context, Cursor cursor,
 ViewGroup parent) {
 return LayoutInflater.from(context).inflate(
 android.R.layout.simple_list_item_1,parent,
 false);
 }

 @Override
 public void bindView(View view, Context context, Cursor
 cursor) {
 TextView textView = (TextView)view.findViewById(
 android.R.id.text1);
 textView.setText(cursor.getString(
 getCursor().getColumnIndex("word")));
 }
}

Working with Data

156

2.	 Next, create another new Java class and call this one DictionaryLoader. Though
this is the class that handles the data loading on the background thread, it's actually
very simple:
public class DictionaryLoader extends CursorLoader {
 Context mContext;
 public DictionaryLoader(Context context) {
 super(context);
 mContext = context;
 }

 @Override
 public Cursor loadInBackground() {
 DictionaryDatabase db = new
 DictionaryDatabase(mContext);
 return db.getWordList();
 }
}

3.	 Next, open ActivityMain.java. We need to change the declaration to implement
the LoaderManager.LoaderCallbacks<Cursor> interface as follows:
public class MainActivity extends AppCompatActivity
 implements {

4.	 Add the adapter to the global declarations. The complete list is as follows:
EditText mEditTextWord;
EditText mEditTextDefinition;
DictionaryDatabase mDB;
ListView mListView;
DictionaryAdapter mAdapter;

5.	 Change onCreate() to use the new adapter and add a call to update the Loader
after deleting a record. The final onCreate() method should look as follows:
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 mDB = new DictionaryDatabase(this);

 mEditTextWord = (EditText) findViewById(R.id.editTextWord);
 mEditTextDefinition = (EditText) findViewById(
 R.id.editTextDefinition);

Chapter 6

157

 Button buttonAddUpdate = (Button) findViewById(
 R.id.buttonAddUpdate);
 buttonAddUpdate.setOnClickListener(new View.OnClickListener()
{
 @Override
 public void onClick(View v) {
 saveRecord();
 }
 });

 mListView = (ListView) findViewById(R.id.listView);
 mListView.setOnItemClickListener(new AdapterView.
OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView<?> parent, View
 view, int position, long id) {
 Toast.makeText(MainActivity.this,
 mDB.getDefinition(id),
 Toast.LENGTH_SHORT).show();
 }
 });
 mListView.setOnItemLongClickListener(new
 AdapterView.OnItemLongClickListener() {
 @Override
 public boolean onItemLongClick(AdapterView<?>
 parent, View view, int position, long id) {
 Toast.makeText(MainActivity.this, "Records
 deleted = " + mDB.deleteRecord(id),
 Toast.LENGTH_SHORT).show();
 getSupportLoaderManager().restartLoader(0,
 null, MainActivity.this);
 return true;
 }
 });
 getSupportLoaderManager().initLoader(0, null, this);
 mAdapter = new
 DictionaryAdapter(this,mDB.getWordList(),0);
 mListView.setAdapter(mAdapter);
}

Working with Data

158

6.	 We no longer have the updateWordList() method, so change saveRecord()
as follows:
private void saveRecord() {
 mDB.saveRecord(mEditTextWord.getText().toString(),
 mEditTextDefinition.getText().toString());
 mEditTextWord.setText("");
 mEditTextDefinition.setText("");
 getSupportLoaderManager().restartLoader(0, null,
 MainActivity.this);
}

7.	 Finally, implement these three methods for the Loader interface:
@Override
public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 return new DictionaryLoader(this);
}

@Override
public void onLoadFinished(Loader<Cursor> loader, Cursor
 data) {
 mAdapter.swapCursor(data);
}

@Override
public void onLoaderReset(Loader<Cursor> loader) {
 mAdapter.swapCursor(null);
}

8.	 Run the program on a device or emulator.

How it works...
The default CursorAdapter requires a Content Provider URI. Since we are accessing
the SQLite database directly (and not through a Content Provider), we don't have a URI
to pass, so instead we created a custom adapter by extending the CursorAdapter
class. DictionaryAdapter still performs the same functionality as the previous
SimpleCursorAdapter from the previous recipe, namely mapping the data from
the cursor to the item layout.

Chapter 6

159

The next class we added was DictionaryLoader, which is the actual Loader. As you
can see, it's actually very simple. All it does is return the cursor from getWordList().
The key here is that this query is being handled in a background thread and will call the
onLoadFinished() callback (in MainActivity.java) when it finishes. Fortunately,
most of the heavy lifting is handled in the base class.

This takes us to ActivityMain.java, where we implemented the following three callbacks
from the LoaderManager.LoaderCallbacks interface:

ff onCreateLoader(): It's initially called in onCreate() with the initLoader()
call. It's called again with the restartLoader() call, after we make changes
to the database.

ff onLoadFinished(): It's called when the Loader loadInBackground() finishes.

ff onLoaderReset(): It's called when the Loader is being recreated (such as with the
restart() method). We set the old cursor to null because it will be invalidated
and we don't want a reference kept around.

There's more...
As you saw in the previous example, we need to manually notify the Loader to requery the
database using restartLoader(). One of the benefits of using a Loader is that it can
auto-update, but it requires a Content Provider as the data source. A Content Provider
supports using an SQLite database as the data source, and for a serious application,
would be recommended. See the following Content Provider link to get started.

See also
ff The AsyncTask recipe in Chapter 14, Getting Your App Ready for the Play Store.

ff Creating a Content Provider: http://developer.android.com/guide/topics/
providers/content-provider-creating.html

161

7
Alerts and Notifications

In this chapter, we will cover the following topics:

ff Lights, Action, and Sound – getting the user's attention!

ff Creating a Toast using a custom layout

ff Displaying a message box with AlertDialog

ff Displaying a progress dialog

ff Lights, Action, and Sound Redux using Notifications

ff Creating a Media Player Notification

ff Making a Flashlight with a Heads-Up Notification

Introduction
Android provides many ways to notify your user—from non-visual methods, including sounds,
lights, and vibration, to visual methods including Toasts, Dialogs, and Status Bar notifications.

Keep in mind, notifications distract your user, so it's a good idea to be very judicious when
using any notification. Users like to be in control of their device (it is theirs, after all) so give
them the option to enable and disable notifications as they desire. Otherwise, your user might
get annoyed and uninstall your app altogether.

We'll start by reviewing the following non-UI based notification options:

ff Flash LED

ff Vibrate phone

ff Play ringtone

Alerts and Notifications

162

Then we'll move on to visual notifications, including:

ff Toasts
ff AlertDialog

ff ProgressDialog

ff Status Bar Notifications

The recipes that follow will show you how to implement these features in your own
applications. It's worth reading the following link to understand "best practices" when
using notifications:

Refer to Android Notification Design Guidelines at http://developer.
android.com/design/patterns/notifications.html

Lights, Action, and Sound – getting the
user's attention!

Most of the recipes in this chapter use the Notification object to alert your users, so this
recipe will show an alternative approach for when you don't actually need a notification.

As the recipe title implies, we're going to use lights, action, and sound:

ff Lights: Normally, you'd use the LED device, but that is only available through the
Notification object, which we'll demonstrate later in the chapter. Instead we'll take
this opportunity to use setTorchMode() (added in API 23—Android 6.0), to use the
camera flash as a flashlight. (Note: as you'll see in the code, this feature will only work
on an Android 6.0 device with a camera flash.)

ff Action: We'll vibrate the phone.

ff Sound: We'll use the RingtoneManager to play the default notification sound.

As you'll see, the code for each of these is quite simple.

As demonstrated in the following Lights, Action, and Sound Redux using Notifications recipe,
all three options: LED, vibrate, and sounds, are available through the Notification object. The
Notification object would certainly be the most appropriate method to provide alerts and
reminders when the user is not actively engaged in your app. But for those times when you
want to provide feedback while they are using your app, these options are available. The
vibrate option is a good example; if you want to provide haptic feedback to a button press
(common with keyboard apps), call the vibrate method directly.

Chapter 7

163

Getting ready
Create a new project in Android Studio and call it: LightsActionSound. When prompted
for the API level, we need API 21 or above to compile the project. Select Empty Activity when
prompted for the Activity Type.

How to do it...
We'll use three buttons to initiate each action, so start by opening activity_main.xml and
follow these steps:

1.	 Replace the existing <TextView> element with the following three buttons:
<ToggleButton
 android:id="@+id/buttonLights"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Lights"
 android:layout_centerHorizontal="true"
 android:layout_above="@+id/buttonAction"
 android:onClick="clickLights" />
<Button
 android:id="@+id/buttonAction"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Action"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true"
 android:onClick="clickVibrate"/>
<Button
 android:id="@+id/buttonSound"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Sound"
 android:layout_below="@+id/buttonAction"
 android:layout_centerHorizontal="true"
 android:onClick="clickSound"/>

2.	 Add the following permission to the Android Manifest:
<uses-permission android:name="android.permission.VIBRATE"></uses-
permission>

Alerts and Notifications

164

3.	 Open ActivityMain.java and add the following global variables:
private CameraManager mCameraManager;
private String mCameraId=null;
private ToggleButton mButtonLights;

4.	 Add the following method to get the Camera ID:
private String getCameraId() {
 try {
 String[] ids = mCameraManager.getCameraIdList();
 for (String id : ids) {
 CameraCharacteristics c =
 mCameraManager.getCameraCharacteristics(id);
 Boolean flashAvailable = c.get(
 CameraCharacteristics.FLASH_INFO_AVAILABLE);
 Integer facingDirection = c.get(
 CameraCharacteristics.LENS_FACING);
 if (flashAvailable != null && flashAvailable
 && facingDirection != null
 && facingDirection ==
 CameraCharacteristics.
 LENS_FACING_BACK) {
 return id;
 }
 }
 } catch (CameraAccessException e) {
 e.printStackTrace();
 }
 return null;
}

5.	 Add the following code to the onCreate() method:
mButtonLights = (ToggleButton)findViewById(R.id.buttonLights);
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {
 mCameraManager = (CameraManager)
 this.getSystemService(Context.CAMERA_SERVICE);
 mCameraId = getCameraId();
 if (mCameraId==null) {
 mButtonLights.setEnabled(false);
 } else {
 mButtonLights.setEnabled(true);
 }
} else {
 mButtonLights.setEnabled(false);
}

Chapter 7

165

6.	 Now add the code to handle each of the button clicks:
public void clickLights(View view) {
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {
 try {
 mCameraManager.setTorchMode(mCameraId,
 mButtonLights.isChecked());
 } catch (CameraAccessException e) {
 e.printStackTrace();
 }
 }
}

public void clickVibrate(View view) {
 ((Vibrator)getSystemService(
 VIBRATOR_SERVICE)).vibrate(1000);
}

public void clickSound(View view) {
 Uri notificationSoundUri = RingtoneManager
 .getDefaultUri(RingtoneManager.TYPE_NOTIFICATION);
 Ringtone ringtone = RingtoneManager
 .getRingtone(getApplicationContext(),
 notificationSoundUri);
 ringtone.play();
}

7.	 You're ready to run the application on a physical device. The code presented here will
need Android 6.0 (or higher) to use the flashlight option.

How it works...
As you can see from the previous paragraphs, most of the code is related to finding and
opening the camera to use the flash feature. setTorchMode() was introduced in API 23,
which is why we have the API version check:

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M){}

This app demonstrates using the new camera2 libraries, which were introduced in Lollipop
(API 21). The vibrate and ringtone methods have both been available since API 1.

The getCameraId() method is where we check for the camera. We want an outward-facing
camera with a flash. If one is found, the ID is returned, otherwise it is null. If the camera id is
null, we disable the button.

Alerts and Notifications

166

For playing the sound, we use the Ringtone object from the RingtoneManager. Besides
it being relatively easy to implement, another benefit to this method is that we can use the
default notification sound, which we get with this code:

Uri notificationSoundUri = RingtoneManager.
getDefaultUri(RingtoneManager.TYPE_NOTIFICATION);

This way, if the user changes their preferred notification sound, we use it automatically.

Last is the call to vibrate the phone. This was the simplest code to use, but it does require
permission, which we added to the Manifest:

<uses-permission android:name="android.permission.VIBRATE">
 </uses-permission>

There's more...
In a production-level application, you wouldn't want to simply disable the button if you didn't
have to. In this case, there are other means to use the camera flash as a flashlight. Take a
look at the multi-media chapter for additional examples on using the camera, where we'll
see getCameraId() used again.

See also
ff Refer to the Lights, Action, and Sound Redux with Notifications recipe later in this

chapter to see the equivalent features using the Notification object

ff Refer to Chapter 11, Multimedia, for examples using the new camera API and other
sound options

Creating a Toast using a custom layout
We've used Toasts quite a bit already in previous chapters as they provide a quick and easy
way to display information—both for the user and for ourselves when debugging.

The previous examples have all used the simple one-line syntax, but the Toast isn't limited
to this. Toasts, like most components in Android, can be customized, as we'll demonstrate
in this recipe.

Chapter 7

167

Android Studio offers a shortcut for making the simple Toast statement. As you start to type
the Toast command, press Ctrl + Spacebar and you'll see the following:

Press Enter to auto-complete. Then, press Ctrl + Spacebar again and you'll see the following:

When you press Enter again, it will auto-complete with the following:

Toast.makeText(MainActivity.this, "", Toast.LENGTH_SHORT).show();

Alerts and Notifications

168

In this recipe, we'll use the Toast Builder to change the default layout, and gravity to create a
custom Toast as shown in this screenshot:

Getting ready
Create a new project in Android Studio and call it: CustomToast. Use the default Phone &
Tablet options and select Empty Activity when prompted for the Activity Type.

How to do it...
We're going to change the shape of the Toast to a square and create a custom layout to
display an image and text message. Start by opening activity_main.xml and follow
these steps:

1.	 Replace the existing <TextView> element with a <Button> as follows:
<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Show Toast"

Chapter 7

169

 android:id="@+id/button"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true"
 android:onClick="showToast"/>

2.	 Create a new resource file in the res/drawable folder named: border_square.
xml and type the following code:
<?xml version="1.0" encoding="utf-8"?>
<layer-list xmlns:android="http://schemas.android.com/apk/
 res/android">
 <item
 android:left="4px"
 android:top="4px"
 android:right="4px"
 android:bottom="4px">
 <shape android:shape="rectangle" >
 <solid android:color="@android:color/black" />
 <stroke android:width="5px" android:color=
 "@android:color/white"/>
 </shape>
 </item>
</layer-list>

3.	 Create a new resource file in the res/layout folder named: toast_custom.xml
and type the following code:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 android:id="@+id/toast_layout_root"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="horizontal"
 android:background="@drawable/border_square">
 <ImageView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/imageView"
 android:layout_weight="1"
 android:src="@mipmap/ic_launcher" />
 <TextView
 android:id="@android:id/message"
 android:layout_width="0dp"
 android:layout_height="match_parent"
 android:layout_weight="1"

Alerts and Notifications

170

 android:textColor="@android:color/white"
 android:padding="10dp" />
</LinearLayout>

4.	 Now open ActivityMain.java and type the following method:
public void showToast(View view) {
 LayoutInflater inflater = (LayoutInflater)this
 .getSystemService(Context.LAYOUT_INFLATER_SERVICE);
 View layout = inflater.inflate(R.layout.toast_custom,
 null);
 ((TextView) layout.findViewById(android.R.id.message))
 .setText("Custom Toast");
 Toast toast = new Toast(this);
 toast.setGravity(Gravity.CENTER, 0, 0);
 toast.setDuration(Toast.LENGTH_LONG);
 toast.setView(layout);
 toast.show();
}

5.	 Run the program on a device or emulator.

How it works...
This custom Toast changes the default gravity, shape, and adds an image just to show that "it
can be done".

The first step is to create a new Toast layout, which we do by inflating our custom_toast
layout. Once we have the new layout, we need to get the TextView so we can set
our message, which we do with the standard setText() method. With this done, we
create a Toast object and set the individual properties. We set the Toast gravity with the
setGravity() method. The gravity determines where on the screen our Toast will display.
We specify our custom layout with the setView() method call. And just like in the single
line variation, we display the Toast with the show() method.

Displaying a message box with AlertDialog
In Chapter 4, Menus, we created a theme to make an Activity look like a dialog. In this recipe,
we'll demonstrate how to create a dialog using the AlertDialog class. The AlertDialog
offers a Title, up to three buttons, and a list or custom layout area, as shown in this example:

Chapter 7

171

The button placement can vary depending on the OS version.

Getting ready
Create a new project in Android Studio and call it: AlertDialog. Use the default Phone &
Tablet options and select the Empty Activity option when prompted for the Activity Type.

How to do it...
To demonstrate, we'll create a Confirm Delete dialog to prompt the user for confirmation after
pressing the Delete button. Start by opening the main_activity.xml layout file and follow
these steps:

1.	 Add the following <Button>:
<Button
 android:id="@+id/buttonClose"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Delete"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true"
 android:onClick="confirmDelete"/>

2.	 Add the confirmDelete() method called by the button:
public void confirmDelete(View view) {
 AlertDialog.Builder builder = new
 AlertDialog.Builder(this);
 builder.setTitle("Delete")
 .setMessage("Are you sure you?")
 .setPositiveButton(android.R.string.ok,
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog,
 int id) {

Alerts and Notifications

172

 Toast.makeText(MainActivity.this, "OK
 Pressed", Toast.LENGTH_SHORT).show();
 }})
 .setNegativeButton(android.R.string.cancel,
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog,
 int id) {
 Toast.makeText(MainActivity.this, "Cancel
 Pressed", Toast.LENGTH_SHORT).show();
 }});
 builder.create().show();
}

3.	 Run the application on a device or emulator.

How it works...
This dialog is meant to serve as a simple confirmation dialog—such as confirming a delete
action. Basically, just create an AlertDialog.Builder object and set the properties as
needed. We use a Toast message to indicate the user selection and we don't even have to
close the dialog; it's taken care of by the base class.

There's more...
As shown in the recipe introduction screenshot, the AlertDialog also has a third button,
called the Neutral button, and can be set using the following method:

builder.setNeutralButton()

Add an icon
To add an icon to the dialog, use the setIcon() method. Here is an example:

.setIcon(R.mipmap.ic_launcher)

Using a list
We can also create a list of items to select with various list-setting methods, including:

.setItems()

.setAdapter()

.setSingleChoiceItems()

.setMultiChoiceItems()

Chapter 7

173

As you can see, there are also methods for single-choice (using a radio button) and multi-
choice lists (using a checkbox).

You can't use both the Message and the Lists, as setMessage()
will take priority.

Custom Layout
Finally, we can also create a custom layout, and set it using:

.setView()

If you use a custom layout and replace the standard buttons, you are also responsible
for closing the dialog. Use hide() if you plan to reuse the dialog and dismiss() when
finished to release the resources.

Displaying a progress dialog
The ProgressDialog has been available since API 1, and is widely used. As we'll demonstrate
in this recipe, it's simple to use, but keep this statement in mind (from the Android Dialog
Guidelines site):

Avoid ProgressDialog

Android includes another dialog class called ProgressDialog that shows a dialog
with a progress bar. However, if you need to indicate loading or indeterminate
progress, you should instead follow the design guidelines for Progress & Activity
and use a ProgressBar in your layout.

http://developer.android.com/guide/topics/ui/dialogs.html

This message doesn't mean the ProgressDialog is deprecated or is bad code. It's
suggesting that the use of the ProgressDialog should be avoided, since the user cannot
interact with your app while the dialog is displayed. If possible, use a layout that includes a
progress bar, instead of using a ProgressDialog.

The Google Play app provides a good example. When adding items to download, Google Play
shows a progress bar, but it's not a dialog, so the user can continue interacting with the app,
even adding more items to download. If possible, use that approach instead.

Alerts and Notifications

174

There are times when you may not have that luxury, such as after placing an order, the user
is going to expect an order confirmation. (Even with Google Play, you still see a confirmation
dialog when actually purchasing apps.) So, remember, avoid the progress dialog if possible.
But, for those times when something must complete before continuing, this recipe provides
an example of how to use the ProgressDialog. The following screenshot shows the
ProgressDialog from the recipe:

Getting ready
Create a new project in Android Studio and call it: ProgressDialog. Use the default Phone
& Tablet options and select Empty Activity when prompted for the Activity Type.

Chapter 7

175

How to do it...
1.	 Since this is just a demonstration on using the ProgressDialog, we will create a button

to show the dialog. To simulate waiting for a server response, we will use a delayed
message to dismiss the dialog. To start, open activity_main.xml and follow
these steps:

2.	 Replace the <TextView> with the following <Button>:
<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Show Dialog"
 android:id="@+id/button"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true"
 android:onClick="startProgress"/>

3.	 Open MainActivity.java and add the following two global variables:
private ProgressDialog mDialog;
final int THIRTY_SECONDS=30*1000;

4.	 Add the showDialog() method referenced by the button click:
public void startProgress(View view) {
 mDialog= new ProgressDialog(this);
 mDialog.setMessage("Doing something...");
 mDialog.setCancelable(false);
 mDialog.show();
 new Handler().postDelayed(new Runnable() {
 public void run() {
 mDialog.dismiss();
 }}, THIRTY_SECONDS);

5.	 Run the program on a device or emulator. When you press the Show Dialog button,
you'll see the dialog as shown in the screen from the Intro.

How it works...
We use the ProgressDialog class to display our dialog. The options should be self-
explanatory, but this setting is worth noting:

mDialog.setCancelable(false);

Alerts and Notifications

176

Normally, a dialog can be cancelled using the back key, but when this is set to false, the
user is stuck on the dialog until it is hidden/dismissed from the code. To simulate a delayed
response from a server, we use a Handler and the postDelayed() method. After the
specified milliseconds (30,000 in this case, to represent 30 seconds), the run() method
will be called, which dismisses our dialog.

There's more...
We used the default ProgressDialog settings for this recipe, which creates an
indeterminate dialog indicator, for example, the continuously spinning circle. If you can
measure the task at hand, such as loading files, you can use a determinate style instead.
Add and run this line of code:

mDialog.setProgressStyle(ProgressDialog.STYLE_HORIZONTAL);

You will get the following dialog style as an output to the preceding line of code:

Lights, Action, and Sound Redux using
Notifications

You're probably already familiar with Notifications as they've become a prominent feature
(even making their way to the desktop environment) and for good reason. They provide an
excellent means to send information to your user. They provide the least intrusive option
of all the alerts and notification options available.

As we saw in the first recipe, Lights, Action, and Sound – getting the user's attention!,
lights, vibration, and sound are all very useful for getting the user's attention. That's why the
Notification object includes support for all three methods, as we'll demonstrate in this recipe.
Given this ability to get your user's attention, care should still be taken not to abuse your user.
Otherwise, they'll likely uninstall your app. It's generally a good idea to give your users the
option to enable/disable notifications and even how to present the notification—with sound
or without, and so on.

Getting ready
Create a new project in Android Studio and call it: LightsActionSoundRedux. Use the
default Phone & Tablet options and select Empty Activity when prompted for the Activity Type.

Chapter 7

177

How to do it...
We'll need permission to use the vibrate option, so start by opening the Android Manifest file,
and follow these steps:

1.	 Add the following permission:
<uses-permission android:name=
 "android.permission.VIBRATE"/>

2.	 Open activity_main.xml and replace the existing <TextView> with the
following buttons:
<Button
 android:id="@+id/buttonSound"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Lights, Action, and Sound"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true"
 android:onClick="clickLightsActionSound"/>

3.	 Now open MainActivity.java and add the following methods to handle the
button click:
public void clickLightsActionSound(View view) {
 Uri notificationSoundUri =
 RingtoneManager.getDefaultUri(
 RingtoneManager.TYPE_NOTIFICATION);
 NotificationCompat.Builder notificationBuilder = new
 NotificationCompat.Builder(this)
 .setSmallIcon(R.mipmap.ic_launcher)
 .setContentTitle("LightsActionSoundRedux")
 .setContentText("Lights, Action & Sound")
 .setSound(notificationSoundUri)
 .setLights(Color.BLUE, 500, 500)
 .setVibrate(new long[]{250,500,250,500,250,500});
 NotificationManager notificationManager =
 (NotificationManager) this.getSystemService(
 Context.NOTIFICATION_SERVICE);
 notificationManager.notify(0,
 notificationBuilder.build());
}

4.	 Run the program on a device or emulator.

Alerts and Notifications

178

How it works...
First, we combined all three actions into a single notification, simply because we could.
You don't have to use all three extra notification options, or even any. Only the following
are required:

.setSmallIcon()

.setContentText()

If you don't set both the icon and text, the notification will not show.

Second, we used the NotificationCompat to build our notification. This comes from the
support library and makes it easier to be backward compatible with older OS versions. If we
request a notification feature that is not available on the user's version of OS, it will simply
be ignored.

The three lines of code that produce our extra notification options include the following:

.setSound(notificationSoundUri)

.setLights(Color.BLUE, 500, 500)

.setVibrate(new long[]{250,500,250,500,250,500});

It's worth noting that we use the same sound URI with the notification as we did with the
RingtoneManager from the earlier Lights, Action, and Sound recipe. The vibrate feature also
required the same vibrate permission as the previous recipe, but notice the value we send is
different. Instead of sending just a duration for the vibration, we are sending a vibrate pattern.
The first value represents the off duration (in milliseconds), the next value represents the
vibration on duration, and repeats.

On devices with LED notification, you won't see the LED notification while the
screen is active.

There's more...
This recipe shows the basics of a notification, but like many features on Android, options have
expanded with later OS releases.

Chapter 7

179

Adding a button to the notification using addAction()
There are several design considerations you should keep in mind when adding action buttons,
as listed in the Notification Guidelines linked in the chapter introduction. You can add a button
(up to three) using the addAction() method on the notification builder. Here's an example
of a notification with one action button:

Here's the code to create this notification:

NotificationCompat.Builder notificationBuilder = new
 NotificationCompat.Builder(this)
 .setSmallIcon(R.mipmap.ic_launcher)
 .setContentTitle("LightsActionSoundRedux")
 .setContentText("Lights, Action & Sound");
Intent activityIntent = new Intent(this,MainActivity.class);
PendingIntent pendingIntent = PendingIntent.getActivity(
 this,0,activityIntent,0);
notificationBuilder.addAction(
 android.R.drawable.ic_dialog_email, "Email",
 pendingIntent);
notificationManager.notify(0, notificationBuilder.build());

An Action requires three parameters—the image, the text, and a PendingIntent. The first
two items are for the visual display, while the third item, the PendingIntent, is called when
the user presses the button.

The previous code creates a very simple PendingIntent; it just launches the app. This
is probably the most common intent for notifications, and is often used for when the user
presses the notification. To set the notification intent, use the following code:

.setContentIntent(pendingIntent)

A button action would probably require more information as it should take the user to the
specific item in your app. You should also create an application back-stack for the best user
experience. Take a look at the topic "Preserving Navigation when Starting an Activity" at the
following link:

http://developer.android.com/guide/topics/ui/notifiers/notifications.
html#NotificationResponse

Alerts and Notifications

180

Expanded notifications
Expanded notifications were introduced in Android 4.1 (API 16) and are available by using the
setStyle() method on the Notification Builder. If the user's OS does not support expanded
notifications, the notification will appear as a normal notification.

The three expanded styles currently available in the NotificationCompat library include:

ff InboxStyle

ff BigPictureStyle

ff BigTextStyle

Here's an example of each notification style, and the code used to create the example:

ff InboxStyle:
NotificationCompat.Builder notificationBuilderInboxStyle =
 new NotificationCompat.Builder(this)
 .setSmallIcon(R.mipmap.ic_launcher);
NotificationCompat.InboxStyle inboxStyle = new
 NotificationCompat.InboxStyle();
inboxStyle.setBigContentTitle("InboxStyle - Big Content Title")
 .addLine("Line 1")
 .addLine("Line 2");
notificationBuilderInboxStyle.setStyle(inboxStyle);
notificationManager.notify(0,
 notificationBuilderInboxStyle.build());

Chapter 7

181

ff BigPictureStyle:
NotificationCompat.Builder
 notificationBuilderBigPictureStyle = new
 NotificationCompat.Builder(this)
 .setSmallIcon(R.mipmap.ic_launcher)
 .setContentTitle("LightsActionSoundRedux")
 .setContentText("BigPictureStyle");
NotificationCompat.BigPictureStyle bigPictureStyle = new
 NotificationCompat.BigPictureStyle();
bigPictureStyle.bigPicture(BitmapFactory.decodeResource(
 getResources(), R.mipmap.ic_launcher));
notificationBuilderBigPictureStyle.setStyle(
 bigPictureStyle);
notificationManager.notify(0,
 notificationBuilderBigPictureStyle.build());

ff BigTextStyle

NotificationCompat.Builder notificationBuilderBigTextStyle
 = new NotificationCompat.Builder(this)
 .setSmallIcon(R.mipmap.ic_launcher)
 .setContentTitle("LightsActionSoundRedux");
NotificationCompat.BigTextStyle BigTextStyle = new
 NotificationCompat.BigTextStyle();
BigTextStyle.bigText("This is an example of the
 BigTextStyle expanded notification.");
notificationBuilderBigTextStyle.setStyle(BigTextStyle);
notificationManager.notify(0,
 notificationBuilderBigTextStyle.build());

Lock screen notifications
Android 5.0 (API 21) and above can show notifications on the lock screen, based on the user's
lock screen visibility. Use setVisibility() to specify the notification visibility using the
following values:

ff VISIBILITY_PUBLIC: All content can be displayed

ff VISIBILITY_SECRET: No content should be displayed

ff VISIBILITY_PRIVATE: Display the basic content (title and icon) but the rest
is hidden

Alerts and Notifications

182

See also
ff See the Creating a Media Player Notification and Making a Flashlight with a

Heads-Up Notification recipes for additional notification options with Android 5.0
(API 21) and greater

Creating a Media Player Notification
This recipe is going to take a look at the new Media Player style introduced in Android 5.0
(API 21). Unlike the previous recipe, Lights, Action, and Sound Redux using Notifications,
which used NotificationCompat, this recipe does not, as this style is not available in
the support library.

Here's a screenshot showing how the notification will appear:

This screenshot shows an example of the Media Player Notification on a lock screen:

Getting ready
Create a new project in Android Studio and call it: MediaPlayerNotification. When
prompted for the API level, we need API 21 (or higher) for this project. Select Empty Activity
when prompted for the Activity Type.

Chapter 7

183

How to do it...
We just need a single button to call our code to send the notification. Open activity_main.
xml and follow these steps:

1.	 Replace the existing <TextView> with the following button code:
<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Show Notification"
 android:id="@+id/button"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true"
 android:onClick="showNotification"/>

2.	 Open MainActivity.java and add the showNotification() method:
@Deprecated
public void showNotification(View view) {
 Intent activityIntent = new Intent(
 this,MainActivity.class);
 PendingIntent pendingIntent =
 PendingIntent.getActivity(this, 0, activityIntent,
 0);

 Notification notification;
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {
 notification = new Notification.Builder(this)
 .setVisibility(Notification.VISIBILITY_PUBLIC)
 .setSmallIcon(Icon.createWithResource(this,
 R.mipmap.ic_launcher))
 .addAction(new Notification.Action.Builder(
 Icon.createWithResource(this,
 android.R.drawable.ic_media_previous),
 "Previous", pendingIntent).build())
 .addAction(new Notification.Action.Builder(
 Icon.createWithResource(this,
 android.R.drawable.ic_media_pause),
 "Pause", pendingIntent).build())
 .addAction(new Notification.Action.Builder(
 Icon.createWithResource(this,
 android.R.drawable.ic_media_next),
 "Next", pendingIntent).build())
 .setContentTitle("Music")
 .setContentText("Now playing...")

Alerts and Notifications

184

 .setLargeIcon(Icon.createWithResource(this,
 R.mipmap.ic_launcher))
 .setStyle(new Notification.MediaStyle()
 .setShowActionsInCompactView(1))
 .build();
 } else {
 notification = new Notification.Builder(this)
 .setVisibility(Notification.VISIBILITY_PUBLIC)
 .setSmallIcon(R.mipmap.ic_launcher)
 .addAction(new Notification.Action.Builder(
 android.R.drawable.ic_media_previous,
 "Previous", pendingIntent).build())
 .addAction(new Notification.Action.Builder(
 android.R.drawable.ic_media_pause, "Pause",
 pendingIntent).build())
 .addAction(new Notification.Action.Builder(
 android.R.drawable.ic_media_next, "Next",
 pendingIntent).build())
 .setContentTitle("Music")
 .setContentText("Now playing...")
 .setLargeIcon(BitmapFactory.decodeResource(
 getResources(), R.mipmap.ic_launcher))
 .setStyle(new Notification.MediaStyle()
 .setShowActionsInCompactView(1))
 .build();
 }
 NotificationManager notificationManager =
 (NotificationManager) this.getSystemService(
 Context.NOTIFICATION_SERVICE);
 notificationManager.notify(0, notification);
}

3.	 Run the program on a device or emulator.

How it works...
The first detail to note is that we decorate our showNotification() method with:

@Deprecated

This tells the compiler we know we are using deprecated calls. (Without this, the compiler will
flag the code.) We follow this with an API check, using this call:

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M)

Chapter 7

185

The icon resource was changed in API 23, but we want this application to run on API 21
(Android 5.0) and later, so we still need to call the old methods when running on API 21
and API 22.

If the user is running on Android 6.0 (or higher), we use the new Icon class to create our
icons, otherwise we use the old constructor. (You'll notice the IDE will show the deprecated
calls with a strikethrough.) Checking the current OS version during runtime is a common
strategy for remaining backward compatible.

We create three actions using addAction() to handle the media player functionality. Since
we don't really have a media player going, we use the same intent for all the actions, but you'll
want to create separate intents in your application.

To make the notification visible on the lock screen, we need to set the visibility level to
VISIBILITY_PUBLIC, which we do with the following call:

.setVisibility(Notification.VISIBILITY_PUBLIC)

This call is worth noting:

.setShowActionsInCompactView(1)

Just as the method name implies, this sets the actions to show when the notification is shown
with a reduced layout. (See the lock screen image in the recipe introduction.)

There's more...
We only created the visual notification in this recipe. If we were creating an actual media
player, we could instantiate a MediaSession class and pass in the session token with
this call:

.setMediaSession(mMediaSession.getSessionToken())

This will allow the system to recognize the media content and react accordingly, such as
updating the lock screen with the current album artwork.

See also
ff Refer to Developer doc – MediaSession at https://developer.android.com/

reference/android/media/session/MediaSession.html

ff The Lock Screen Visibility section in the Lights, Action, and Sound Redux using
Notifications recipe discusses the visibility options.

Alerts and Notifications

186

Making a Flashlight with a Heads-Up
Notification

Android 5.0—Lollipop (API 21) introduced a new type of notification called the Heads-Up
Notification. Many people do not care for this new notification as it can be extremely intrusive,
as it forces its way on top of other apps. (See the following screenshot.) Keep this in mind
when using this type of notification. We're going to demonstrate the Heads-Up Notification
with a Flashlight as this demonstrates a good use-case scenario.

Here's a screenshot showing the Heads-Up Notification we'll create further on:

If you have a device running Android 6.0, you may have noticed the new Flashlight settings
option. As a demonstration, we're going to create something similar in this recipe.

Getting ready
Create a new project in Android Studio and call it: FlashlightWithHeadsUp. When
prompted for the API level, we need API 23 (or higher) for this project. Select Empty Activity
when prompted for the Activity Type.

How to do it...
Our activity layout will consist of just a ToggleButton to control the flashlight mode. We'll be
using the same setTorchMode() code as the Lights, Action, and Sound – getting the user's
attention! recipe presented earlier, and add a Heads-Up Notification. We'll need permission to
use the vibrate option, so start by opening the Android Manifest and following these steps:

1.	 Add the following permission:
<uses-permission android:name=
 "android.permission.VIBRATE"/>

2.	 Specify that we only want a single instance of MainActivity by adding android:l
aunchMode="singleInstance" to the <MainActivity> element. It will look
as follows:
<activity android:name=".MainActivity"
 android:launchMode="singleInstance">

Chapter 7

187

3.	 With the changes to AndroidManifest done, open the activity_main.xml
layout and replace the existing <TextView> element with this <ToggleButton>
code:
<ToggleButton
 android:id="@+id/buttonLight"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Flashlight"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true"
 android:onClick="clickLight"/>

4.	 Now open ActivityMain.java and add the following global variables:
private static final String ACTION_STOP="STOP";
private CameraManager mCameraManager;
private String mCameraId=null;
private ToggleButton mButtonLight;

5.	 Add the following code to the onCreate() to set up the camera:
mButtonLight = (ToggleButton)findViewById(
 R.id.buttonLight);

mCameraManager = (CameraManager) this.getSystemService(
 Context.CAMERA_SERVICE);
mCameraId = getCameraId();
if (mCameraId==null) {
 mButtonLight.setEnabled(false);
} else {
 mButtonLight.setEnabled(true);
}

6.	 Add the following method to handle the response when the user presses the
notification:
@Override
protected void onNewIntent(Intent intent) {
 super.onNewIntent(intent);
 if (ACTION_STOP.equals(intent.getAction())) {
 setFlashlight(false);
 }
}

Alerts and Notifications

188

7.	 Add the method to get the camera id:
private String getCameraId() {
 try {
 String[] ids = mCameraManager.getCameraIdList();
 for (String id : ids) {
 CameraCharacteristics c =
 mCameraManager.getCameraCharacteristics(id);
 Boolean flashAvailable = c.get(
 CameraCharacteristics.FLASH_INFO_AVAILABLE);
 Integer facingDirection = c.get(
 CameraCharacteristics.LENS_FACING);
 if (flashAvailable != null && flashAvailable
 && facingDirection != null
 && facingDirection ==
 CameraCharacteristics
 .LENS_FACING_BACK) {
 return id;
 }
 }
 } catch (CameraAccessException e) {
 e.printStackTrace();
 }
 return null;
}

8.	 Add these two methods to handle the flashlight mode:
public void clickLight(View view) {
 setFlashlight(mButtonLight.isChecked());
 if (mButtonLight.isChecked()) {
 showNotification();
 }
}

private void setFlashlight(boolean enabled) {
 mButtonLight.setChecked(enabled);
 try {
 mCameraManager.setTorchMode(mCameraId, enabled);
 } catch (CameraAccessException e) {
 e.printStackTrace();
 }
}

Chapter 7

189

9.	 Finally, add this method to create the notification:
private void showNotification() {
 Intent activityIntent = new Intent(
 this,MainActivity.class);
 activityIntent.setAction(ACTION_STOP);
 PendingIntent pendingIntent =
 PendingIntent.getActivity(this,0,activityIntent,0);
 final Builder notificationBuilder = new Builder(this)
 .setContentTitle("Flashlight")
 .setContentText("Press to turn off the
 flashlight")
 .setSmallIcon(R.mipmap.ic_launcher)
 .setLargeIcon(BitmapFactory.decodeResource(
 getResources(), R.mipmap.ic_launcher))
 .setContentIntent(pendingIntent)
 .setVibrate(new long[]{DEFAULT_VIBRATE})
 .setPriority(PRIORITY_MAX);
 NotificationManager notificationManager =
 (NotificationManager) this.getSystemService(
 Context.NOTIFICATION_SERVICE);
 notificationManager.notify(0,
 notificationBuilder.build());
}

10.	 You're ready to run the application on a physical device. As noted previously, you'll
need an Android 6.0 (or higher) device, with an outward-facing camera flash.

How it works...
Since this recipe uses the same flashlight code as Lights, Action, and Sound – getting the
user's attention!, we'll jump to the showNotification() method. Most of the notification
builder calls are the same as previous examples, but there are two significant differences:

.setVibrate()

.setPriority(PRIORITY_MAX)

Notifications will not be escalated to Heads-Up Notifications unless the
priority is set to HIGH (or above) and uses either vibrate or sound.
Note this from the Developer documentation given at: http://
developer.android.com/reference/android/app/
Notification.html#headsUpContentView:
"At its discretion, the system UI may choose to show this as a heads-up
notification."

Alerts and Notifications

190

We create a PendingIntent as we've done previously, but here we set the action with:

activityIntent.setAction(ACTION_STOP);

We set the app to only allow a single instance in the AndroidManifest file, as we don't want
to start a new instance of the app when the user presses the notification. The PendingIntent
we created sets the action, which we check in the onNewIntent() callback. If the user
opens the app without pressing the notification, they can still disable the flashlight with the
ToggleButton.

There's more...
Just like in the Creating a Toast using a custom layout recipe earlier, we can use a custom
layout with notifications. Use the following method on the builder to specify the layout:

headsupContentView()

See also
ff Refer to the Lights, Action, and Sound – getting the user's attention! recipe

191

8
Using the Touchscreen

and Sensors

In this chapter, we will cover the following topics:

ff Listening for click and long-press events

ff Recognizing tap and other common gestures

ff Pinch-to-zoom with multi-touch gestures

ff Swipe-to-Refresh

ff Listing available sensors – an introduction to the Android Sensor Framework

ff Reading sensor data – using the Android Sensor Framework events

ff Reading device orientation

Introduction
These days, mobile devices are packed with sensors, often including a gyroscope, magnetic,
gravity, pressure, and/or temperature sensors, not to mention the touchscreen. This provides
many new and exciting options to interact with your user. Through the sensors, you can
determine three-dimensional device location and how the device itself is being used, such as
shaking, rotation, tilt, and so on. Even the touchscreen offers many new input methods from
just the simple click to gestures and multi-touch.

We'll start this chapter by exploring touchscreen interactions, starting with a
simple click and long-press, then move on to detecting common gestures using the
SimpleOnGestureListener class. Next we'll look at a multi-touch using the
pinch-to-zoom gesture with ScaleGestureDetector.

Using the Touchscreen and Sensors

192

This book is meant to offer a quick guide to adding features and functionality to your own
applications. As such, it focuses on the code needed. It's highly recommended that you
spend some time reading the Design Guidelines as well.

Google Gesture Design Guidelines at https://www.google.com/
design/spec/patterns/gestures.html

In the later part of this chapter we'll look at the sensor abilities in Android, using the Android
Sensor Framework. We'll demonstrate how to obtain a list of all the available sensors, plus
how to check for a specific sensor. Once we obtain a sensor, we'll demonstrate setting up a
listener to read the sensor data. Finally, we'll end the chapter with a demonstration on how
to determine the device orientation.

Listening for click and long-press events
Almost every application needs to recognize and respond to basic events such as clicks and
long-presses. It's so basic, in most of the recipes, we use the XML onClick attribute, but the
more advanced listeners require setting up through code.

Android provides an Event Listener interface for receiving a single notification when certain
actions occur, as shown in the following list:

ff onClick(): It's called when a View is pressed

ff onLongClick(): It's called when the View is long-pressed

ff onFocusChange(): It's called when the user navigates to or from the View

ff onKey(): It's called when a hardware key is pressed or released

ff onTouch(): It's called when a touch event occurs

This recipe will demonstrate responding to the click event, as well as the long-press event.

Getting ready
Create a new project in Android Studio and call it: PressEvents. Use the default Phone &
Tablet options and select Empty Activity when prompted for the Activity Type.

Chapter 8

193

How to do it...
Setting up to receive basic View events is very simple. First we will create a View; we'll use
a button for our example, then set the Event Listener in the Activity's onCreate() method.
Here are the steps:

1.	 Open activity_main.xml and replace the existing TextView with the
following Button:
<Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true" />

2.	 Now open MainActivy.java and add the following code to the existing
onCreate() method:
Button button = (Button)findViewById(R.id.button);
button.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 Toast.makeText(MainActivity.this, "Click",
 Toast.LENGTH_SHORT).show();
 }
});
button.setOnLongClickListener(new
 View.OnLongClickListener() {
 @Override
 public boolean onLongClick(View v) {
 Toast.makeText(MainActivity.this, "Long Press",
 Toast.LENGTH_SHORT).show();
 return true;
 }
});

3.	 Run the application on a device or emulator and try a regular click and long-press.

Using the Touchscreen and Sensors

194

How it works...
In most of the examples used in this book, we set up the onClick listener in XML using the
following attribute:

android:onClick=""

You may notice the XML onClick() method callback requires the same method signature as
the setOnClickListener .onClick() callback:

public void onClick(View v) {}

That's because Android automatically sets up the callback for us when we use the XML
onClick attribute. This example also demonstrates that we can have multiple listeners
on a single View.

The last point to note is that the onLongClick() method returns a Boolean, as do most
of the other event listeners. Return true to indicate the event has been handled.

There's more...
Although a button is typically used to indicate where a user should "press", we could have
used both the setOnClickListener() and setOnLongClickListener() with any
View, even a TextView.

As mentioned in the introduction, there are other Event Listeners. You can use Android
Studio's auto-complete feature. Start by typing the following command:

button.setOn

Then press Ctrl + Spacebar to see the list.

Recognizing tap and other common gestures
Unlike the Event Listeners described in the previous recipe, gestures require a two-step process:

ff Gather the movement data

ff Analyze the data to determine whether it matches a known gesture

Chapter 8

195

Step 1 begins when the user touches the screen, which fires the onTouchEvent() callback
with the movement data sent in a MotionEvent object. Fortunately, Android makes
Step 2, analyzing the data, easier with the GestureDetector class, which detects
the following gestures:

ff onTouchEvent()

ff onDown()

ff onFling()

ff onLongPress()

ff onScroll()

ff onShowPress()

ff onDoubleTap()

ff onDoubleTapEvent()

ff onSingleTapConfirmed()

This recipe will demonstrate using the GestureDetector.SimpleOnGestureListener
to recognize the touch and double tap gestures.

Getting ready
Create a new project in Android Studio and call it: CommonGestureDetector. Use the default
Phone & Tablet options and select Empty Activity when prompted for the Activity Type.

How to do it...
We will be using the activity itself for detecting gestures, so we don't need to add any Views
to the layout. Open MainActivity.java and follow these steps:

1.	 Add the following global variable:
private GestureDetectorCompat mGestureDetector;

2.	 Add the following GestureListener class within the MainActivity class:
private class GestureListener extends
 GestureDetector.SimpleOnGestureListener {
 @Override
 public boolean onSingleTapConfirmed(MotionEvent e) {
 Toast.makeText(MainActivity.this,
 "onSingleTapConfirmed",
 Toast.LENGTH_SHORT).show();
 return super.onSingleTapConfirmed(e);
 }
 @Override

Using the Touchscreen and Sensors

196

 public boolean onDoubleTap(MotionEvent e) {
 Toast.makeText(MainActivity.this, "onDoubleTap",
 Toast.LENGTH_SHORT).show();
 return super.onDoubleTap(e);
 }
}

3.	 Override the onTouchEvent() as follows:
public boolean onTouchEvent(MotionEvent event) {
 mGestureDetector.onTouchEvent(event);
 return super.onTouchEvent(event);
}

4.	 Last, add the following line of code to onCreate():
mGestureDetector = new GestureDetectorCompat(this, new
 GestureListener());

5.	 Run this application on a device or emulator.

How it works...
We're using GestureDetectorCompat, which is from the Support Library allowing gesture
support on devices running Android 1.6 and later.

As mentioned in the recipe introduction, detecting gestures is a two-step process. To gather
the movement, or gesture, data, we start tracking the movement with the touch event. Every
time the onTouchEvent() is called, we send that data to the GestureDetector. The
GestureDetector handles the second step, analyzing the data. Once a gesture has been
detected, the appropriate callback is made. Our example handles both the single and double
tap gestures.

There's more...
Your application can easily add support for the remaining gestures detected by the
GestureDetector simply by overriding the appropriate callback.

See also
ff See the next recipe, Pinch-to-zoom with multi-touch gestures, for multi-touch gestures

Chapter 8

197

Pinch-to-zoom with multi-touch gestures
The previous recipe used the SimpleOnGestureListener to provide detection of simple,
one-finger, gestures. In this recipe, we will demonstrate multi-touch with the common
pinch-to-zoom gesture using the SimpleOnScaleGestureListener class.

The following screenshot shows the icon zoomed out using the application created in the
following recipe:

The following screenshot shows the icon zoomed in:

Using the Touchscreen and Sensors

198

Getting ready
Create a new project in Android Studio and call it: MultiTouchZoom. Use the default Phone
& Tablet options and select Empty Activity when prompted for the Activity Type.

How to do it...
To provide a visual indication of the pinch-to-zoom, we'll use an ImageView with the
application icon. Open activity_main.xml and follow these steps:

1.	 Replace the existing TextView with the following ImageView:
<ImageView
 android:id="@+id/imageView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@mipmap/ic_launcher"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true" />

2.	 Now open MainActivity.java and add the following global variables to the class:
private ScaleGestureDetector mScaleGestureDetector;
private float mScaleFactor = 1.0f;
private ImageView mImageView;

3.	 Override onTouchEvent() as follows:
public boolean onTouchEvent(MotionEvent motionEvent) {
 mScaleGestureDetector.onTouchEvent(motionEvent);
 return true;
}

4.	 Add the following ScaleListener class to the MainActivity class:
private class ScaleListener extends ScaleGestureDetector.
SimpleOnScaleGestureListener {
 @Override
 public boolean onScale(ScaleGestureDetector
 scaleGestureDetector) {
 mScaleFactor *=
 scaleGestureDetector.getScaleFactor();
 mScaleFactor = Math.max(0.1f,
 Math.min(mScaleFactor, 10.0f));
 mImageView.setScaleX(mScaleFactor);

Chapter 8

199

 mImageView.setScaleY(mScaleFactor);
 return true;
 }
}

5.	 Add the following code to the existing onCreate() method:
mImageView=(ImageView)findViewById(R.id.imageView);
mScaleGestureDetector = new ScaleGestureDetector(this, new
 ScaleListener());

6.	 To experiment with the pinch-to-zoom functionality, run the application on a device
with a touchscreen.

How it works...
The ScaleGestureDetector does all the work by analyzing the gesture data and reporting
the final scale factor through the onScale() callback. We get the actual scale factor by
calling getScaleFactor() on ScaleGestureDetector.

We use an ImageView with the application icon to provide a visual representation
of the scaling by setting the ImageView scale using the scale factor returned from
ScaleGestureDetector. To prevent the scaling from becoming too large or too small,
we add the following check:

mScaleFactor = Math.max(0.1f, Math.min(mScaleFactor, 10.0f));

Swipe-to-Refresh
Pulling down a list to indicate a manual refresh is known as the Swipe-to-Refresh gesture.
It's such a common feature that this functionality has been encapsulated in a single widget
called SwipeRefreshLayout.

Using the Touchscreen and Sensors

200

This recipe will show how to use the widget to add Swipe-to-Refresh functionality with a
ListView. The following screenshot shows the refresh in action:

Getting ready
Create a new project in Android Studio and call it: SwipeToRefresh. Use the default Phone
& Tablet options and select Empty Activity when prompted for the Activity Type.

How to do it...
First, we need to add the SwipeRefreshLayout widget and ListView to the activity layout,
then we will implement the refresh listener in the java code. Here are the detailed steps:

1.	 Open activity_main.xml and replace the existing <TextView> with
the following:
<android.support.v4.widget.SwipeRefreshLayout
 xmlns:android="http://schemas.android.com/apk/
 res/android"
 android:id="@+id/swipeRefresh"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <ListView
 android:id="@android:id/list"

Chapter 8

201

 android:layout_width="match_parent"
 android:layout_height="match_parent" />
</android.support.v4.widget.SwipeRefreshLayout>

2.	 Now open MainActivity.java and add the following global variables to the class:
SwipeRefreshLayout mSwipeRefreshLayout;
ListView mListView;
List mArrayList = new ArrayList<>();
private int mRefreshCount=0;

3.	 Add the following method to handle the refresh:
private void refreshList() {
 mRefreshCount++;
 mArrayList.add("Refresh: " + mRefreshCount);
 ListAdapter countryAdapter = new ArrayAdapter<String>(
 this, android.R.layout.simple_list_item_1,
 mArrayList);
 mListView.setAdapter(countryAdapter);
 mSwipeRefreshLayout.setRefreshing(false);
}

4.	 Add the following code to the existing onCreate() method:
mSwipeRefreshLayout = (SwipeRefreshLayout)findViewById(
 R.id.swipeRefresh);
mSwipeRefreshLayout.setOnRefreshListener(
 new SwipeRefreshLayout.OnRefreshListener() {
 @Override
 public void onRefresh() {
 refreshList();
 }
});

mListView = (ListView)findViewById(android.R.id.list);
final String[] countries = new String[]{"China", "France",
 "Germany", "India", "Russia", "United Kingdom",
 "United States"};
mArrayList = new ArrayList<String>(
 Arrays.asList(countries));
ListAdapter countryAdapter = new ArrayAdapter<String>(
 this, android.R.layout.simple_list_item_1, mArrayList);
mListView.setAdapter(countryAdapter);

5.	 Run the application on a device or emulator.

Using the Touchscreen and Sensors

202

How it works...
Most of the code for this recipe is to simulate a refresh by adding items to the ListView
each time the refresh method is called. The main steps for implementing the Swipe-to-Refresh
include:

1.	 Add the SwipeRefreshLayout widget.

2.	 Include the ListView within the SwipeRefreshLayout.

3.	 Add the OnRefreshListener to call your refresh method.

4.	 Call setRefreshing(false) after completing your update.

That's it. The widget makes adding Swipe-to-Refresh very easy!

There's more...
Although the Swipe-to-Refresh gesture is a common feature of applications these days,
it's still good practice to include a menu item (especially for accessibility reasons). Here
is a snippet of XML for the menu layout:

<menu xmlns:android="http://schemas.android.com/apk/res/android" >
 <item
 android:id="@+id/menu_refresh"
 android:showAsAction="never"
 android:title="@string/menu_refresh"/>
</menu>

Call your refresh method in the onOptionsItemSelected() callback. When
performing a refresh from code, such as from the menu item event, you want to notify
SwipeRefreshLayout of the refresh so it can update the UI. Do this with the following code:

SwipeRefreshLayout.setRefreshing(true);

This tells the SwipeRefreshLayout that a refresh is starting so it can display the
in-progress indicator.

Listing available sensors – an introduction
to the Android Sensor Framework

Android includes support for hardware sensors using the Android Sensor Framework. The
framework includes the following classes and interfaces:

ff SensorManager

ff Sensor

Chapter 8

203

ff SensorEventListener

ff SensorEvent

Most Android devices include hardware sensors, but they vary greatly between different
manufacturers and models. If your application utilizes sensors, you have two choices:

ff Specify the sensor in the Android Manifest

ff Check for the sensor at runtime

To specify your application uses a sensor, include the <uses-feature> declaration in the
Android Manifest. Here is an example requiring a compass to be available:

<uses-feature android:name="android.hardware.sensor.compass"
 android:required="true"/>

If your application utilizes the compass, but does not require it to function, you should set
android:required="false" instead, otherwise the application will not be available
through Google Play.

Sensors are grouped into the following three categories:

ff Motion sensors

ff Environmental sensors

ff Position sensors

The Android SDK provides support for the following sensor types:

Sensor Detects Use
TYPE_ACCELEROMETER Motion detection including

gravity
Used to determine shake, tilt,
and so on

TYPE_AMBIENT_
TEMPERATURE

Measures ambient room
temperature

Used for determining local
temperature

TYPE_GRAVITY Measures the force of gravity
on all three axes

Used for motion detection

TYPE_GYROSCOPE Measures rotation on all three
axes

Used to determine turn, spin,
and so on

TYPE_LIGHT Measures light level Used for setting screen
brightness

TYPE_LINEAR_
ACCELERATION

Motion detection excluding
gravity

Used to determine acceleration

TYPE_MAGNETIC_FIELD Measures geomagnetic field Used to create a compass or
determine bearing

TYPE_PRESSURE Measures air pressure Used for barometer

Using the Touchscreen and Sensors

204

Sensor Detects Use
TYPE_PROXIMITY Measures object relative to the

screen
Used to determine whether the
device is being held against the
ear during a phone call

TYPE_RELATIVE_
HUMIDITY

Measures relative humidity Used to determine dew point
and humidity

TYPE_ROTATION_
VECTOR

Measures device orientation Used to detect motion and
rotation

There are two additional sensors: TYPE_ORIENTATION and TYPE_TEMPERATURE, that have
been deprecated as they have been replaced by newer sensors.

This recipe will demonstrate retrieving a list of available sensors. Here is a screenshot from
a physical device:

Chapter 8

205

Getting ready
Create a new project in Android Studio and call it: ListDeviceSensors. Use the default
Phone & Tablet options and select Empty Activity when prompted for the Activity Type.

How to do it...
First, we'll query the list of sensors available, then display the results in a ListView. Here are
the detailed steps:

1.	 Open activity_main.xml and replace the existing TextView with the following:
<ListView
 android:id="@+id/list"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

2.	 Next, open ActivityMain.java and add the following code to the existing
onCreate() method:
ListView listView = (ListView)findViewById(R.id.list);
List sensorList = new ArrayList<String>();

List<Sensor> sensors = ((SensorManager) getSystemService(
 Context.SENSOR_SERVICE)).getSensorList(Sensor.TYPE_ALL);
for (Sensor sensor : sensors) {
 sensorList.add(sensor.getName());
}
ListAdapter sensorAdapter = new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1, sensorList);
listView.setAdapter(sensorAdapter);

3.	 Run the program on a device or emulator.

How it works...
The following line of code is responsible for getting the list of available sensors; the rest of the
code is to populate the ListView:

List<Sensor> sensors = ((SensorManager) getSystemService(
 Context.SENSOR_SERVICE)).getSensorList(Sensor.TYPE_ALL);

Notice that we get back a list of Sensor objects. We only get the sensor name to display in
the ListView, but there are other properties available as well. See the link provided in the
See also section for a complete list.

Using the Touchscreen and Sensors

206

There's more...
As shown in the introduction screenshot from a Nexus 9, a device can have multiple
sensors of the same type. If you are looking for a specific sensor, you can pass in one of the
constants from the table shown in the introduction. In this case, if you wanted to see all the
Accelerometer sensors available, you could use this call:

List<Sensor> sensors = sensorManager.getSensorList(Sensor.TYPE_
ACCELEROMETER);

If you're not looking for a list of sensors, but need to work with a specific sensor, you can
check for a default sensor using this code:

if (sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER) !=
 null){
 //Sensor is available - do something here
}

See also
ff Android Developer Sensor website at http://developer.android.com/

reference/android/hardware/Sensor.html

Reading sensor data – using the Android
Sensor Framework events

The previous recipe, Listing available sensors – an introduction to the Android Sensor
Framework, provided an introduction to the Android Sensor Framework. Now we'll look at
reading the sensor data using the SensorEventListener. The SensorEventListener
interface only has two callbacks:

ff onSensorChanged()

ff onAccuracyChanged()

When the sensor has new data to report, it calls the onSensorChanged() with a
SensorEvent object. This recipe will demonstrate reading the Light sensor, but since all
the sensors use the same framework, it's very easy to adapt this example to any of the other
sensors. (See the list of sensor types available in the previous recipe's introduction.)

Getting ready
Create a new project in Android Studio and call it: ReadingSensorData. Use the default
Phone & Tablet options and select Empty Activity when prompted for the Activity Type.

Chapter 8

207

How to do it...
We'll add a TextView to the activity layout to display the sensor data, then we'll add the
SensorEventListener to the java code. We'll use the onResume() and onPause()
events to start and stop our Event Listener. To get started, open activity_main.xml
and follow these steps:

1.	 Modify the existing TextView as follows:
<TextView
 android:id="@+id/textView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_centerVertical="true"
 android:text="0"/>

2.	 Now open MainActivity.java and add the following global variable declarations:
private SensorManager mSensorManager;
private Sensor mSensor;
private TextView mTextView;

3.	 Add the SensorListener class to the MainActivity class as follows:
private SensorEventListener mSensorListener = new
SensorEventListener() {
 @Override
 public void onSensorChanged(SensorEvent event) {
 mTextView.setText(String.valueOf(event.values[0]));
 }
 @Override
 public void onAccuracyChanged(Sensor sensor, int
 accuracy) {
 //Nothing to do
 }
};

4.	 We'll register and unregister the sensor events in the onResume() and onPause()
as follows:
@Override
protected void onResume() {
 super.onResume();
 mSensorManager.registerListener(mSensorListener, mSensor,
 SensorManager.SENSOR_DELAY_NORMAL);
}

Using the Touchscreen and Sensors

208

@Override
protected void onPause() {
 super.onPause();
 mSensorManager.unregisterListener(mSensorListener);
}

5.	 Add the following code to the onCreate():
mTextView = (TextView)findViewById(R.id.textView);
mSensorManager = (SensorManager)
 getSystemService(Context.SENSOR_SERVICE);
mSensor = mSensorManager.getDefaultSensor(
 Sensor.TYPE_LIGHT);

6.	 You can now run the application on a physical device to see the raw data from the
light sensor.

How it works...
Using the Android Sensor Framework starts with obtaining the Sensor, which we do in
onCreate(). Here, we call getDefaultSensor(), requesting TYPE_LIGHT. We register the
listener in onResume() and unregister again in onPause() to reduce battery consumption. We
pass in our mSensorListener object when we call registerListener().

In our case, we are only looking for the sensor data, which is sent in the onSensorChanged()
callback. When the sensor changes, we update the TextView with the sensor data.

There's more...
Now that you've worked with one sensor, you know how to work with all the sensors, as they
all use the same framework. Of course, what you do with the data will vary greatly, depending
on the type of data you're reading. The Environment sensors, as shown here, return a single
value, but the Position and Motion sensors can also return additional elements, indicated
as follows.

Environment sensors
Android supports the following four environment sensors:

ff Humidity

ff Light

ff Pressure

ff Temperature

Chapter 8

209

The environment sensors are generally easier to work with since the data returned is in a
single element and doesn't usually require calibration or filtering. We used the Light sensor for
this demonstration since most devices include a light sensor to control the screen brightness.

Position sensors
The Position sensors include:

ff Geomagnetic Field

ff Proximity

The following sensor types use the Geomagnetic field:

ff TYPE_GAME_ROTATION_VECTOR

ff TYPE_GEOMAGNETIC_ROTATION_VECTOR

ff TYPE_MAGNETIC_FIELD

ff TYPE_MAGNETIC_FIELD_UNCALIBRATED

These sensors return three values in the onSensorChanged() event, except for the
TYPE_MAGNETIC_FIELD_UNCALIBRATED, which sends six values.

A third sensor, the Orientation sensor, has been deprecated, and it is now recommended to
use getRotation() and getRotationMatrix() to calculate the orientation changes.
(For device orientation, such as Portrait and Landscape modes, see the next recipe: Reading
device orientation.)

Motion sensors
The Motion sensors include the following:

ff Accelerometer

ff Gyroscope

ff Gravity

ff Linear acceleration

ff Rotation vector

These include the following sensor types:

ff TYPE_ACCELEROMETE

ff TYPE_GRAVITY

ff TYPE_GYROSCOPE

ff TYPE_GYROSCOPE_UNCALIBRATED

ff TYPE_LINEAR_ACCELERATION

Using the Touchscreen and Sensors

210

ff TYPE_ROTATION_VECTOR

ff TYPE_SIGNIFICANT_MOTION

ff TYPE_STEP_COUNTER

ff TYPE_STEP_DETECTOR

These sensors also include three data elements, with the exception of the last three. The
TYPE_SIGNIFICANT_MOTION and TYPE_STEP_DETECTOR indicate an event, while the
TYPE_STEP_COUNTER returns the number of steps since last boot (while the sensor
was active).

See also
ff The Listing available sensors – an introduction to the Android Sensor Framework recipe

ff The Creating a Compass using sensor data and RotateAnimation recipe in Chapter 9,
Graphics and Animation

ff For device orientation, see the Reading device orientation recipe

ff Chapter 13, Getting Location and Using Geofencing, covers the GPS and
Location recipe

Reading device orientation
Although the Android framework will automatically load a new resource (such as the layout)
upon orientation changes, there are times when you may wish to disable this behavior. If
you wish to be notified of the orientation change instead of Android handling it automatically,
add the following attribute to the Activity in the Android Manifest:

android:configChanges="keyboardHidden|orientation|screenSize"

When any of the following configuration changes occur, the system will notify you through the
onConfigurationChanged() method instead of handling it automatically:

ff keyboardHidden

ff orientation

ff screenSize

The onConfigurationChanged() signature is as follows:

onConfigurationChanged (Configuration newConfig)

Chapter 8

211

You'll find the new orientation in newConfig.orientation.

Disabling the automatic configuration change (which causes the layout to
be reloaded and state information to be reset) should not be used as a
replacement for properly saving state information. Your application can still be
interrupted or stopped altogether at any time and killed by the system. (See
Saving an activity's state in Chapter 1, Activities, for properly saving a state.)

This recipe will demonstrate how to determine the current device orientation.

Getting ready
Create a new project in Android Studio and call it: GetDeviceOrientation. Use the default
Phone & Tablet options and select Empty Activity when prompted for the Activity Type.

How to do it...
We'll add a button to the layout to check the orientation on demand. Start by opening
activity_main.xml and follow these steps:

1.	 Replace the existing TextView with the following Button:
<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Check Orientation"
 android:id="@+id/button"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true"
 android:onClick="checkOrientation"/>

2.	 Add the following method to handle the button click:
public void checkOrientation(View view){
 int orientation = getResources()
 .getConfiguration().orientation;
 switch (orientation) {
 case Configuration.ORIENTATION_LANDSCAPE:
 Toast.makeText(MainActivity.this,
 "ORIENTATION_LANDSCAPE",
 Toast.LENGTH_SHORT).show();
 break;
 case Configuration.ORIENTATION_PORTRAIT:
 Toast.makeText(MainActivity.this,
 "ORIENTATION_PORTRAIT",
 Toast.LENGTH_SHORT).show();

Using the Touchscreen and Sensors

212

 break;
 case Configuration.ORIENTATION_UNDEFINED:
 Toast.makeText(MainActivity.this,
 "ORIENTATION_UNDEFINED",
 Toast.LENGTH_SHORT).show();
 break;
 }
}

3.	 Run the application on a device or emulator.

Use Ctrl + F11 to rotate the emulator.

How it works...
All we need to do to get the current orientation is call this line of code:

getResources().getConfiguration().orientation

The orientation is returned as an int, which we compare to one of three possible values,
as demonstrated.

There's more...

Getting current device rotation
Another scenario where you may need to know the current orientation is when working with
camera data—pictures and/or videos. Often, the image may be rotated according to the device
orientation or to compensate for the current orientation. In this scenario, there's another
option available to get the rotation:

int rotation =
 getWindowManager().getDefaultDisplay().getRotation();

In the preceding line of code, rotation will be one of the following values:

ff Surface.ROTATION_0

ff Surface.ROTATION_90

ff Surface.ROTATION_180

ff Surface.ROTATION_270

Chapter 8

213

The rotation value will be from its normal orientation. For example, when
using a table with a normal orientation of landscape, if a picture is taken in
portrait orientation, the value will be ROTATION_90 or ROTATION_270.

See also
ff The Saving an activity's state recipe in Chapter 1, Activities

ff Refer to Configuration Developer Link at http://developer.android.com/
reference/android/content/res/Configuration.html

ff Refer to Display Developer Link at http://developer.android.com/
reference/android/view/Display.html#getRotation()

215

9
Graphics and Animation

In this chapter, we will cover the following topics:

ff Scaling down large images to avoid Out of Memory exceptions

ff A transition animation – defining scenes and applying a transition

ff Creating a Compass using sensor data and RotateAnimation

ff Creating a slideshow with ViewPager

ff Creating a Card Flip Animation with Fragments

ff Creating a Zoom Animation with a Custom Transition

Introduction
Animations can be both visually appealing and functional, as demonstrated with the simple
button press. The graphical representation of the button press brings the app alive, plus it
provides a functional value by giving the user a visual response to the event.

The Android Framework provides several animation systems to make it easier to include
animations in your own application. They include the following:

ff View Animation: (The original animation system.) It usually requires less code but
has limited animation options

ff Property Animation: It's a more flexible system allowing animation of any property of
any object

ff Drawable Animation: It uses drawable resources to create frame-by-frame
animations (like a movie)

Graphics and Animation

216

The Property Animation system was introduced in Android 3.0, and it is usually preferred over
View Animation because of the flexibility. The main drawbacks to View Animation include:

ff Limited aspects of what can be animated—such as scale and rotation

ff Can only animate the contents of the view—it cannot change where on the screen the
view is drawn (so it cannot animate moving a ball across the screen)

ff Can only animate View objects

Here is a simple example demonstrating a View Animation to "blink" a view (a simple
simulation of a button press):

Animation blink =AnimationUtils.loadAnimation(this,R.anim.blink);
view.startAnimation(blink);

Here are the contents for the blink.xml resource file, located in the res/anim folder:

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android">
 <alpha android:fromAlpha="1.0"
 android:toAlpha="0.0"
 android:background="#000000"
 android:interpolator="@android:anim/linear_interpolator"
 android:duration="100"
 android:repeatMode="restart"
 android:repeatCount="0"/>
</set>

As you can see, it's very simple to create this animation, so if the View Animation accomplishes
your goal, use it. When it doesn't meet your needs, turn to the Property Animation system. We'll
demonstrate Property Animation using the new objectAnimator in the Creating a Card Flip
Animation with Fragments and Creating a Zoom Animation with a Custom Transition recipes.

The A transition animation – defining scenes and applying a transition recipe will provide
additional information on the Android Transition Framework, which we will use in many of
the recipes.

Interpolator is a function that defines the rate of change for an animation.

Chapter 9

217

Interpolators will be mentioned in several recipes in this chapter and in the previous blink
example. The Interpolator defines how the transition is calculated. A Linear Interpolator will
calculate the change evenly over the set duration, whereas an AccelerateInterpolator
function would create a faster movement through the duration. Here is the full list of
Interpolators available, along with the XML Identifier:

ff AccelerateDecelerateInterpolator (
 @android:anim/accelerate_decelerate_interpolator)

ff AccelerateInterpolator (
 @android:anim/accelerate_interpolator)

ff AnticipateInterpolator (
 @android:anim/anticipate_interpolator)

ff AnticipateOvershootInterpolator (
 @android:anim/anticipate_overshoot_interpolator)

ff BounceInterpolator (@android:anim/bounce_interpolator)

ff CycleInterpolator (@android:anim/cycle_interpolator)

ff DecelerateInterpolator (@android:anim/decelerate_interpolator)

ff LinearInterpolator (@android:anim/linear_interpolator)

ff OvershootInterpolator (
 @android:anim/overshoot_interpolator)

Although animations don't generally require much memory, the graphic resources often do.
Many of the images you may want to work with often exceed the available device memory. In
the first recipe of this chapter, Scaling down large images to avoid Out of Memory exceptions,
we'll discuss how to subsample (or scale down) images.

Scaling down large images to avoid Out of
Memory exceptions

Working with images can be very memory intensive, often resulting in your application
crashing with an Out of Memory exception. This is especially true with pictures taken with
the device camera, as they often have a much higher resolution than the device itself.

Since loading a higher resolution image than the UI supports doesn't provide any visual
benefit in this example, this recipe will demonstrate how to take smaller samples of the
image for display. We'll use the BitmapFactory to first check the image size then load
a scaled-down image.

Graphics and Animation

218

Here's a screenshot from this recipe showing a thumbnail of a very large image:

Getting ready
Create a new project in Android Studio and call it: LoadLargeImage. Use the default Phone
& Tablet options and select Empty Activity when prompted for the Activity Type.

We'll need a large image for this recipe; so we turned to www.Pixabay.com for an image.
Since the image itself doesn't matter, we downloaded the first image shown at the time.
(The full size image is 6000 x 4000 and 3.4MB.)

How to do it...
As stated previously in Getting ready, we need a large image to demonstrate the scaling. Once
you have the image, follow these steps:

1.	 Copy the image to res/drawable as image_large.jpg (use the appropriate
extension if you choose a different file type).

Chapter 9

219

2.	 Open activity_main.xml and replace the existing TextView with the following
ImageView:
<ImageView
 android:id="@+id/imageViewThumbnail"
 android:layout_width="100dp"
 android:layout_height="100dp"
 android:layout_centerInParent="true" />

3.	 Now open MainActivity.java and add this method, which we'll explain shortly:
public Bitmap loadSampledResource(int imageID, int
 targetHeight, int targetWidth) {
 final BitmapFactory.Options options = new
 BitmapFactory.Options();
 options.inJustDecodeBounds = true;
 BitmapFactory.decodeResource(getResources(), imageID,
 options);
 final int originalHeight = options.outHeight;
 final int originalWidth = options.outWidth;
 int inSampleSize = 1;
 while ((originalHeight / (inSampleSize *2)) >
 targetHeight && (originalWidth / (inSampleSize *2))
 > targetWidth) {
 inSampleSize *= 2;
 }
 options.inSampleSize = inSampleSize;
 options.inJustDecodeBounds = false;
 return BitmapFactory.decodeResource(getResources(),
 imageID, options);
}

4.	 Add the following code to the existing onCreate() method:
ImageView imageView = (ImageView)findViewById(
 R.id.imageViewThumbnail);
imageView.setImageBitmap(loadSampledResource(
 R.drawable.image_large, 100, 100));

5.	 Run the application on a device or emulator.

Graphics and Animation

220

How it works...
The purpose of the loadSampledResource() method is to load a smaller image, to reduce
the memory consumption of the image. If we attempted to load the full image chosen from
www.Pixabay.Com (see the previous Getting ready section), the app would require over
3 MB of RAM to load. That's more memory than most devices can handle (at the moment
anyway), and even if it could be loaded completely, would provide no visual benefit for our
thumbnail view.

To avoid an Out of Memory situation, we use the inSampleSize property of
the BitmapFactory.Options to reduce, or subsample, the image. (If we set the
inSampleSize=2, it will reduce the image by half. If we use inSampleSize=4, it will
reduce the image by one-fourth) To calculate the inSampleSize, first we need to know
the image size. We can use the inJustDecodeBounds property as follows:

options.inJustDecodeBounds = true;

This tells the BitmapFactory to get the image dimensions without actually storing the image
contents. Once we have the image size, we calculate the sample using this code:

while ((originalHeight / (inSampleSize *2)) > targetHeight &&
 (originalWidth / (inSampleSize *2)) > targetWidth) {
 inSampleSize *= 2;
}

The purpose of this code is to determine the largest sample size that does not reduce the
image below the target dimensions. To do that, we double the sample size and check whether
the size exceeds the target size dimensions. If it doesn't, we save the doubled sample size
and repeat. Once the reduced size falls below the target dimensions, we use the last saved
inSampleSize.

From the inSampleSize documentation (link in the following See also
section), note that the decoder uses a final value based on powers of 2, any
other value will be rounded down to the nearest power of 2.

Once we have the sample size, we set the inSampleSize property and set
inJustDecodeBounds to false, to load normally. Here is the code:

options.inSampleSize = inSampleSize;
options.inJustDecodeBounds = false;

Chapter 9

221

It's important to note, this recipe illustrates the concept for applying the task in your own
application. Loading and processing images can be a long operation, which could cause your
application to stop responding. This is not a good thing and could cause Android to show the
Application Not Responding (ANR) dialog. It is recommended to perform long tasks on a
background thread to keep your UI thread responsive. The AsyncTask class is available for
doing background network processing, but there are many other libraries available as well
(links at the end of the recipe):

ff Volley: Perform fast, scalable UI operations over the network (see Chapter 12,
Telephony, Networks, and the Web)

ff Picasso: A powerful image-downloading and caching library for Android

ff Android Universal Image Loader: Powerful and flexible library for loading, caching,
and displaying images

There's more...
It's important to note that the targetHeight and targetWidth parameters we pass to
the loadSampledResource() method do not actually set the image size. If you run the
application using the same size image we used, the sample size will be 32, resulting in a
loaded image size of 187 x 125.

If your layout needs a specific size of image, either set the size in the layout file, or you can
modify the image size directly using the Bitmap class.

See also
ff Developer Docs: BitmapFactory.inSampleSize() at https://developer.

android.com/reference/android/graphics/BitmapFactory.Options.
html#inSampleSize

ff Refer to the Android Universal Image Loader page at https://github.com/
nostra13/Android-Universal-Image-Loader

ff Refer to Picasso at https://square.github.io/picasso/

ff Check the AsyncTask task in Chapter 14, Getting Your App Ready for the Play Store,
for processing long-running operations on a background thread.

Graphics and Animation

222

A transition animation – defining scenes
and applying a transition

The Android Transition Framework offers the following:

ff Group-level animations: Animation applies to all views in a hierarchy

ff Transition-based animation: Animation based on starting and ending property change

ff Built-in animations: Some common transition effects, such as fade-in/out
and movement

ff Resource file support: Save animation values to a resource (XML) file to load
during runtime

ff Lifecycle callbacks: Receive callback notifications during the animation

A transition animation consists of the following:

ff Starting Scene: The view (or ViewGroup) at the start of the animation

ff Transition: The change type (see later on)

ff Ending Scene: The ending view (or ViewGroup)

ff Transitions: Android provides built-in support for the following three transitions:

�� AutoTransition (default transition): Fade out, move, and resize, then fade
in (in that order)

�� Fade: Fade in, fade out (default), or both (specify order)

�� ChangeBounds: Move and resize

The Transition Framework will automatically create the frames needed to animate from the
start to end scenes.

The following are some known limitations of the Transition Framework when working with the
following classes:

ff SurfaceView: Animations may not appear correct since SurfaceView animations
are performed on a non-UI thread, so they may be out of sync with the application

ff TextView: Animating text size changes may not work correctly resulting in the text
jumping to the final state

ff AdapterView: Classes that extend the AdapterView, such as the ListView and
GridView, may hang

ff TextureView: Some transitions may not work

Chapter 9

223

This recipe provides a quick tutorial on using the transition animation system. We'll start by
defining the scenes and transition resources, then applying the transition, which creates the
animation. The following steps will walk you through creating the resources in XML, as they
are generally recommended. Resources can also be created through code, which we'll
discuss in the There's more section.

Getting ready
Create a new project in Android Studio and call it: TransitionAnimation. On the Target
Android Devices dialog, select the Phone & Tablet option and choose API 19 (or above) for
the Minimum SDK. Select Empty Activity when prompted for the Activity Type.

How to do it...
Here are the steps to create the resource files and apply the transition animation:

1.	 Change the existing activity.main.xml layout file as follows:
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/layout"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Top"
 android:id="@+id/textViewTop"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Bottom"
 android:id="@+id/textViewBottom"
 android:layout_alignParentBottom="true"
 android:layout_centerHorizontal="true" />
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Go"
 android:id="@+id/button"

Graphics and Animation

224

 android:layout_centerInParent="true"
 android:onClick="goAnimate"/>
</RelativeLayout>

2.	 Create a new layout file called activity_main_end.xml using the following XML:
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/layout"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Bottom"
 android:id="@+id/textViewBottom"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Top"
 android:id="@+id/textViewTop"
 android:layout_alignParentBottom="true"
 android:layout_centerHorizontal="true" />
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Go"
 android:id="@+id/button"
 android:layout_centerInParent="true"/>
</RelativeLayout>

3.	 Make a new transition resource directory (File | New | Android resource directory
and choose Transition as the Resource type).

4.	 Create a new file in the res/transition folder called transition_move.xml
using the following XML:
<?xml version="1.0" encoding="utf-8"?>
<changeBounds xmlns:android=
 "http://schemas.android.com/apk/res/android" />

Chapter 9

225

5.	 Add the goAnimate() method using the following code:
public void goAnimate(View view) {
 ViewGroup root = (ViewGroup) findViewById(R.id.layout);
 Scene scene = Scene.getSceneForLayout(root,
 R.layout.activity_main_end, this);
 Transition transition = TransitionInflater.from(this)
 .inflateTransition(R.transition.transition_move);
 TransitionManager.go(scene, transition);
}

6.	 You're ready to run the application on a device or emulator.

How it works...
You probably find the code itself rather simple. As outlined in the recipe introduction, we just
need to create the starting and ending scenes and set the transition type. Here's a detailed
breakdown of the code.

Creating the start scene
Running the following line of code will create the start scene:

ViewGroup root = (ViewGroup) findViewById(R.id.layout);

Creating the transition:
Running the following line of code will create the transition:

Transition transition = TransitionInflater.from(this)
 .inflateTransition(R.transition.transition_move);

Defining the ending scene:
Running the following line of code will define the ending scene:

Scene scene = Scene.getSceneForLayout(root,
 R.layout.activity_main_end, this);

Starting the transition:
Running the following line of code will start the transition:

TransitionManager.go(scene, transition);

Though simple, most of the work for this recipe was in creating the necessary resource files.

Graphics and Animation

226

There's more...
Now we'll take a look at creating this same transition animation with a code-only solution
(although we'll still use the initial activity_main.xml layout file):

ViewGroup root = (ViewGroup) findViewById(R.id.layout);
Scene scene = new Scene(root);

Transition transition = new ChangeBounds();
TransitionManager.beginDelayedTransition(root,transition);

TextView textViewTop = (TextView)findViewById(R.id.textViewTop);
RelativeLayout.LayoutParams params =
 (RelativeLayout.LayoutParams)textViewTop.getLayoutParams();
params.addRule(RelativeLayout.ALIGN_PARENT_BOTTOM,1);
params.addRule(RelativeLayout.ALIGN_PARENT_TOP, 0);
textViewTop.setLayoutParams(params);

TextView textViewBottom = (TextView)findViewById(
 R.id.textViewBottom);
params = (RelativeLayout.LayoutParams)
 textViewBottom.getLayoutParams();
params.addRule(RelativeLayout.ALIGN_PARENT_BOTTOM,0);
params.addRule(RelativeLayout.ALIGN_PARENT_TOP, 1);
textViewBottom.setLayoutParams(params);

TransitionManager.go(scene);

We still need the starting and ending scene along with the transition; the only difference is
how we create the resources. In the previous code, we created the Start Scene using the
current layout.

Before we start modifying the layout through code, we call the beginDelayedTransition()
method of TransitionManager with the transition type. The TransitionManager will track
the changes for the ending scene. When we call the go() method, the TransitionManager
automatically animates the change.

See also
ff Refer to the Animation resources web page at https://developer.android.

com/guide/topics/resources/animation-resource.html

Chapter 9

227

Creating a Compass using sensor data and
RotateAnimation

In the previous chapter, we demonstrated reading sensor data from the physical device
sensors. In that recipe, we used the Light Sensor since the data from Environment Sensors
generally don't require any extra processing. Although it's easy to get the magnetic field
strength data, the numbers themselves don't have much meaning and certainly don't
create an appealing display.

In this recipe, we'll demonstrate getting the magnetic field data along with the accelerometer
data to calculate magnetic north. We'll use the SensorManager.getRotationMatrix to
animate the compass while responding to the device movement. Here's a screenshot of our
compass application on a physical device:

Graphics and Animation

228

Getting ready
Create a new project in Android Studio and call it: Compass. Use the default Phone & Tablet
options and select Empty Activity when prompted for the Activity Type.

We will need an image for the compass indicator. Again, we can turn to www.Pixabay.Com
for an image. We used the following image:

https://pixabay.com/en/geography-map-compass-rose-plot-42608/

Though not required, this image has a transparent background, which looks better when
rotating the image.

How to do it...
As mentioned in the previous Getting ready section, we'll need an image for the compass. You
can download the one previously linked, or use any image you prefer, then follow these steps:

1.	 Copy your image to the res/drawable folder and name it compass.png.

2.	 Open activity_main.xml and replace the existing TextView with the following
ImageView:
<ImageView
 android:id="@+id/imageViewCompass"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerInParent="true"
 android:src="@drawable/compass"/>

3.	 Now open MainActivity.java and add the following global variable declarations:
private SensorManager mSensorManager;
private Sensor mMagnetometer;
private Sensor mAccelerometer;
private ImageView mImageViewCompass;
private float[] mGravityValues=new float[3];
private float[] mAccelerationValues=new float[3];
private float[] mRotationMatrix=new float[9];
private float mLastDirectionInDegrees = 0f;

4.	 Add the following SensorEventListener class to the MainActivity class:
private SensorEventListener mSensorListener = new
 SensorEventListener() {
 @Override
 public void onSensorChanged(SensorEvent event) {
 calculateCompassDirection(event);

Chapter 9

229

 }
 @Override
 public void onAccuracyChanged(Sensor sensor, int
 accuracy) {
 //Nothing to do
 }
};

5.	 Override onResume() and onPause() as follows:
@Override
protected void onResume() {
 super.onResume();
 mSensorManager.registerListener(mSensorListener,
 mMagnetometer, SensorManager.SENSOR_DELAY_FASTEST);
 mSensorManager.registerListener(mSensorListener,
 mAccelerometer, SensorManager
 .SENSOR_DELAY_FASTEST);
}

@Override
protected void onPause() {
 super.onPause();
 mSensorManager.unregisterListener(mSensorListener);
}

6.	 Add the following code to the existing onCreate()method:
mImageViewCompass=(ImageView)findViewById(
 R.id.imageViewCompass);
mSensorManager = (SensorManager) getSystemService(
 Context.SENSOR_SERVICE);
mMagnetometer = mSensorManager.getDefaultSensor(
 Sensor.TYPE_MAGNETIC_FIELD);
mAccelerometer = mSensorManager.getDefaultSensor(
 Sensor.TYPE_ACCELEROMETER);

7.	 The final code does the actual calculations and animation:
private void calculateCompassDirection(SensorEvent event) {
 switch (event.sensor.getType()) {
 case Sensor.TYPE_ACCELEROMETER:
 mAccelerationValues = event.values.clone();
 break;
 case Sensor.TYPE_MAGNETIC_FIELD:
 mGravityValues = event.values.clone();
 break;
 }

Graphics and Animation

230

 boolean success = SensorManager.getRotationMatrix(
 mRotationMatrix, null, mAccelerationValues,
 mGravityValues);
 if(success){
 float[] orientationValues = new float[3];
 SensorManager.getOrientation(mRotationMatrix,
 orientationValues);
 float azimuth = (float)Math.toDegrees(
 -orientationValues[0]);
 RotateAnimation rotateAnimation = new
 RotateAnimation(
 mLastDirectionInDegrees, azimuth,
 Animation.RELATIVE_TO_SELF, 0.5f,
 Animation.RELATIVE_TO_SELF, 0.5f);
 rotateAnimation.setDuration(50);
 rotateAnimation.setFillAfter(true);
 mImageViewCompass.startAnimation(rotateAnimation);
 mLastDirectionInDegrees = azimuth;
 }

8.	 You're ready to run the application. Although you can run this application on
an emulator, without an accelerometer and magnetometer, you won't see the
compass move.

How it works...
Since we've already covered reading sensor data in Reading sensor data – using the Android
Sensor Framework (from the previous chapter), we won't repeat explaining the sensor
framework, and instead jump right to the calculateCompassDirection() method.

We call this method directly from the onSensorChanged() callback. Since we used the same
class to handle the sensor callbacks for both the Magnetometer and Accelerometer, we first
check which sensor is being reported in the SensorEvent. Then we call SensorManager.
getRotationMatrix(), passing in the last sensor data. If the calculation is successful, it
returns a RotationMatrix, which we use to call the SensorManager.getOrientation()
method. getOrientation() will return the following data in the orientationValues array:

ff Azimuth: value [0]

ff Pitch: value [1]

ff Roll: value [2]

Chapter 9

231

The azimuth is reported in radians, in the opposite direction, so we reverse the sign and
convert it to degrees using Math.toDegrees(). The azimuth represents the direction
of North, so we use it in our RotateAnimation.

With the math already done by the SensorManager, the actual compass animation is very
simple. We create a RotateAnimation using the previous direction, the new direction. We
use the Animation.RELATIVE_TO_SELF flag and 0.5f (or 50%) to set the center of the
image as the rotation point. Before calling startAnimation() to update the compass, we
set the animation duration using setDuration() and setFillAfter(true). (Using true
indicates we want the image to be left "as is" after the animation completes, otherwise
the image would reset back to the original image.) Finally, we save the azimuth for the
next sensor update.

There's more...
It's worth taking some time to experiment with the RotationAnimation settings and the
sensor update timing. In our call to register the sensor listener, we use SensorManager.
SENSOR_DELAY_FASTEST along with 50 milliseconds for the setDuration() to create a
fast animation. You could also try using a slower sensor update and a slower animation, and
compare the results.

See also
ff Reading sensor data – using the Android Sensor Framework in the previous chapter

for details on reading the sensor data.

ff Refer to the getRotationMatrix() Developer Document at http://developer.
android.com/reference/android/hardware/SensorManager.
html#getRotationMatrix(float[], float[], float[], float[])

ff Refer to the getOrientation() Developer Document at http://developer.
android.com/reference/android/hardware/SensorManager.
html#getOrientation(float[], float[])

ff Refer to the RotateAnimation Developer Document at http://developer.
android.com/reference/android/view/animation/RotateAnimation.
html

http://developer.android.com/reference/android/hardware/SensorManager.html#getRotationMatrix(float[], float[], float[], float[])
http://developer.android.com/reference/android/hardware/SensorManager.html#getRotationMatrix(float[], float[], float[], float[])
http://developer.android.com/reference/android/hardware/SensorManager.html#getRotationMatrix(float[], float[], float[], float[])
http://developer.android.com/reference/android/hardware/SensorManager.html#getOrientation(float[], float[])
http://developer.android.com/reference/android/hardware/SensorManager.html#getOrientation(float[], float[])
http://developer.android.com/reference/android/hardware/SensorManager.html#getOrientation(float[], float[])
http://developer.android.com/reference/android/view/animation/RotateAnimation.html
http://developer.android.com/reference/android/view/animation/RotateAnimation.html
http://developer.android.com/reference/android/view/animation/RotateAnimation.html

Graphics and Animation

232

Creating a slideshow with ViewPager
This recipe will show you how to create a slideshow using the ViewPager class. Here is a
screenshot showing a transition from one picture to another:

Getting ready
Create a new project in Android Studio and call it: SlideShow. Use the default Phone &
Tablet options and select Empty Activity when prompted for the Activity Type.

We need several images for the slideshow. For demonstration purposes, we downloaded
four images from www.Pixabay.com to include in the project source files, but you can
use any images.

How to do it...
We'll create a Fragment to display each image for our slideshow, then set up the ViewPager
in the Main Activity. Here are the steps:

1.	 Copy four images to the /res/drawable folder and name them slide_0 through
slide_3, keeping their original file extensions.

2.	 Create a new layout file called fragment_slide.xml using the following XML:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/
 apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

Chapter 9

233

 <ImageView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/imageView"
 android:layout_gravity="center_horizontal" />
</LinearLayout>

3.	 Now create a new Java class called SlideFragment. It will extend Fragment
as follows:
public class SlideFragment extends Fragment {

Use the following import:
import android.support.v4.app.Fragment;

4.	 Add the following global declaration:
private int mImageResourceID;

5.	 Add the following empty, default fragment constructor:
public SlideFragment() {}

6.	 Add the following method to save the image resource ID:
public void setImage(int resourceID) {
 mImageResourceID=resourceID;
}

7.	 Override onCreateView() as follows:
@Override
public View onCreateView(
 LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 ViewGroup rootView = (ViewGroup) inflater.inflate(
 R.layout.fragment_slide, container, false);
 ImageView imageView = (ImageView)rootView.findViewById(
 R.id.imageView);
 imageView.setImageResource(mImageResourceID);
 return rootView;
}

8.	 Our main activity will display just a ViewPager. Open activity_main.xml and
replace the file contents as follows:
<android.support.v4.view.ViewPager
 xmlns:android="http://schemas.android.com/apk/
 res/android"
 android:id="@+id/viewPager"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

Graphics and Animation

234

9.	 Now open MainActivity.java and change MainActivity to extend
FragmentActivity as shown:
public class MainActivity extends FragmentActivity {

Use the following import:
import android.support.v4.app.FragmentActivity;

10.	 Add the following global declarations:
private final int PAGE_COUNT=4;
private ViewPager mViewPager;
private PagerAdapter mPagerAdapter;

Use the following imports:

import android.support.v4.view.PagerAdapter;
import android.support.v4.view.ViewPager;

11.	 Create the following subclass within MainActivity:
private class SlideAdapter extends
 FragmentStatePagerAdapter {
 public SlideAdapter(FragmentManager fm) {
 super(fm);
 }
 @Override
 public Fragment getItem(int position) {
 SlideFragment slideFragment = new SlideFragment();
 switch (position) {
 case 0:
 slideFragment.setImage(R.drawable.slide_0);
 break;
 case 1:
 slideFragment.setImage(R.drawable.slide_1);
 break;
 case 2:
 slideFragment.setImage(R.drawable.slide_2);
 break;
 case 3:
 slideFragment.setImage(R.drawable.slide_3);
 break;
 }
 return slideFragment;
 }
 @Override

Chapter 9

235

 public int getCount() {
 return PAGE_COUNT;
 }
}

Use the following imports:

import android.support.v4.app.Fragment;
import android.support.v4.app.FragmentManager;
import android.support.v4.app.FragmentStatePagerAdapter;

12.	 Override onBackPressed() as follows:
@Override
public void onBackPressed() {
 if (mViewPager.getCurrentItem() == 0) {
 super.onBackPressed();
 } else {
 mViewPager.setCurrentItem(
 mViewPager.getCurrentItem() - 1);
 }
}

13.	 Add the following code to the onCreate() method:
mViewPager = (ViewPager) findViewById(R.id.viewPager);
mPagerAdapter = new SlideAdapter(getSupportFragmentManager());
mViewPager.setAdapter(mPagerAdapter);

14.	 Run the application on a device or emulator.

How it works...
The first step is to create a fragment. Since we're doing a slideshow, all we need is an
ImageViewer. We also change MainActivity to extend FragmentActivity to load
the fragments into the ViewPager.

The ViewPager uses a FragmentStatePagerAdapter as the source for the fragments
to transition. We create the SlideAdapter to handle the two callbacks from the
FragmentStatePagerAdapter class:

ff getCount()

ff getItem()

Graphics and Animation

236

getCount() simply returns the number of pages we have in our slideshow. getItem()
returns the actual fragment to display. This is where we specify the image we want to display.
As you can see, it would be very easy to add or change the slideshow.

Handling the Back key isn't a requirement for the ViewPager, but it does provide a better
user experience. onBackPressed() decrements the current page until it reaches the first
page, then it sends the Back key to the super class, which exits the application.

There's more...
As you can see from the example, the ViewPager takes care of most of the work, including
handling the transition animations. We can customize the transition if we want, by
implementing the transformPage() callback on the ViewPager.PageTransformer
interface. (See the next recipe for a custom animation.)

Creating a Setup Wizard
The ViewPager can also be used to create a Setup Wizard. Instead of creating a single
fragment to display an image, create a fragment for each step of your wizard and return
the appropriate fragment in the getItem() callback.

See also
ff Refer to the Android ViewPager Documentation at http://developer.android.

com/reference/android/support/v4/view/ViewPager.html

ff Refer to the Creating a custom Zoom Animation recipe for an example on creating a
custom animation.

Creating a Card Flip Animation with
Fragments

The card flip is a common animation that we will demonstrate using fragment transitions.
We'll use two different images—one for the front and one for the back, to create the card flip
effect. We'll need four animation resources: two for the front and two for the back transitions,
which we will define in XML using objectAnimator.

Chapter 9

237

Here's a screenshot of the application we'll build showing the Card Flip Animation in action:

Getting ready
Create a new project in Android Studio and call it: CardFlip. Use the default Phone & Tablet
options and select Empty Activity when prompted for the Activity Type.

For the front and back images of the playing card, we found the following images
on www.Pixabay.com:

ff https://pixabay.com/en/ace-hearts-playing-cards-poker-28357/

ff https://pixabay.com/en/card-game-deck-of-cards-card-game-48978/

Graphics and Animation

238

How to do it...
We'll need two fragments—one for the front of the card and the other for the back. Each
fragment will define the image for the card. Then we'll need four animation files for the full
card flip effect. Here are the steps to set up the project structure correctly and to create the
resources needed:

1.	 Once you have front and back images for the cards, copy them to the res/drawable
folder as card_front.jpg and card_back.jpg (keep the original file extension of
your images if different).

2.	 Create an animator resource directory: res/animator. (In Android Studio, go to
File | New | Android resource directory. When the New Android Resource dialog
displays, choose animator in the Resource Type dropdown.)

3.	 Create card_flip_left_enter.xml in res/animator using the following XML:
<set xmlns:android="http://schemas.android.com/apk/
 res/android">
 <objectAnimator
 android:valueFrom="1.0"
 android:valueTo="0.0"
 android:propertyName="alpha"
 android:duration="0" />
 <objectAnimator
 android:valueFrom="-180"
 android:valueTo="0"
 android:propertyName="rotationY"
 android:interpolator="@android:interpolator/
 accelerate_decelerate"
 android:duration="@integer/
 card_flip_duration_full"/>
 <objectAnimator
 android:valueFrom="0.0"
 android:valueTo="1.0"
 android:propertyName="alpha"
 android:startOffset="@integer/
 card_flip_duration_half"
 android:duration="1" />
</set>

4.	 Create card_flip_left_exit.xml in res/animator using the following XML:
<set xmlns:android="http://schemas.android.com/apk/res/android">
 <objectAnimator
 android:valueFrom="0"
 android:valueTo="180"

Chapter 9

239

 android:propertyName="rotationY"
 android:interpolator="@android:interpolator/
 accelerate_decelerate"
 android:duration="@integer/
 card_flip_duration_full"/>
 <objectAnimator
 android:valueFrom="1.0"
 android:valueTo="0.0"
 android:propertyName="alpha"
 android:startOffset="@integer/
 card_flip_duration_half"
 android:duration="1" />
</set>

5.	 Create card_flip_right_enter.xml in res/animator using the following XML:
<set xmlns:android="http://schemas.android.com/apk/
 res/android">
 <objectAnimator
 android:valueFrom="1.0"
 android:valueTo="0.0"
 android:propertyName="alpha"
 android:duration="0" />
 <objectAnimator
 android:valueFrom="180"
 android:valueTo="0"
 android:propertyName="rotationY"
 android:interpolator="@android:interpolator/
 accelerate_decelerate"
 android:duration="@integer/
 card_flip_duration_full" />
 <objectAnimator
 android:valueFrom="0.0"
 android:valueTo="1.0"
 android:propertyName="alpha"
 android:startOffset="@integer/
 card_flip_duration_half"
 android:duration="1" />
</set>

6.	 Create card_flip_right_exit.xmlin res/animator using the following XML:
<set xmlns:android="http://schemas.android.com/apk/
 res/android">
 <objectAnimator
 android:valueFrom="0"
 android:valueTo="-180"

Graphics and Animation

240

 android:propertyName="rotationY"
 android:interpolator="@android:interpolator/
 accelerate_decelerate"
 android:duration="@integer/
 card_flip_duration_full" />
 <objectAnimator
 android:valueFrom="1.0"
 android:valueTo="0.0"
 android:propertyName="alpha"
 android:startOffset="@integer/
 card_flip_duration_half"
 android:duration="1" />
</set>

7.	 Create a new resource file in res/values called timing.xml using the following
XML:
<?xml version="1.0" encoding="utf-8"?>
<resources>
 <integer name="card_flip_duration_full">1000</integer>
 <integer name="card_flip_duration_half">500</integer>
</resources>

8.	 Create a new file in res/layout called fragment_card_front.xml using the
following XML:
<?xml version="1.0" encoding="utf-8"?>
<ImageView xmlns:android="http://schemas.android.com/apk/res/
android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:src="@drawable/card_front"
 android:scaleType="centerCrop" />

9.	 Create a new file in res/layout called fragment_card_back.xml using the
following XML:
<?xml version="1.0" encoding="utf-8"?>
<ImageView xmlns:android="http://schemas.android.com/apk/res/
android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:src="@drawable/card_back"
 android:scaleType="centerCrop" />

Chapter 9

241

10.	 Create a new Java class called CardFrontFragment using the following code:
public class CardFrontFragment extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 return inflater.inflate(
 R.layout.fragment_card_front, container,
 false);
 }
}

11.	 Create a new Java class called CardBackFragment using the following code:
public class CardBackFragment extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 return inflater.inflate(
 R.layout.fragment_card_back, container, false);
 }
}

12.	 Replace the existing activity_main.xml file with the following XML:
<FrameLayout
 xmlns:android="http://schemas.android.com/apk/
 res/android"
 android:id="@+id/container"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

13.	 Open MainActivity.java and add the following global declaration:
boolean mShowingBack = false;

14.	 Add the following code to the existing onCreate() method:
FrameLayout frameLayout = (FrameLayout)findViewById(
 R.id.frameLayout);
frameLayout.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 flipCard();
 }
});

if (savedInstanceState == null) {

Graphics and Animation

242

 getFragmentManager()
 .beginTransaction()
 .add(R.id.frameLayout, new CardFrontFragment())
 .commit();
}

15.	 Add the following method, which handles the actual fragment transition:
private void flipCard() {
 if (mShowingBack) {
 mShowingBack = false;
 getFragmentManager().popBackStack();
 } else {
 mShowingBack = true;
 getFragmentManager()
 .beginTransaction()
 .setCustomAnimations(
 R.animator.card_flip_right_enter,
 R.animator.card_flip_right_exit,
 R.animator.card_flip_left_enter,
 R.animator.card_flip_left_exit)
 .replace(R.id.frameLayout, new
 CardBackFragment())
 .addToBackStack(null)
 .commit();
 }
}

16.	 You're ready to run the application on a device or emulator.

How it works...
Most of the effort to create the card flip is in setting up the resources. Since we want a front
and back view of the card, we create two fragments with the appropriate images. We call
the flipCard() method when the card is pressed. The actual animation is handled by
the setCustomAnimations(). This is where we pass in the four animation resources we
defined in XML. As you can see, Android makes it very easy.

It's important to note that we did not use the Support Library Fragment Manager, as the
support library does not support the objectAnimator. If you want support preAndroid 3.0,
you'll need to include the old anim resources and check the OS version at runtime, or create
the animation resources in code. (See the next recipe.)

Chapter 9

243

See also
ff See the next recipe, Creating a Zoom Animation with a Custom Transition, for an

example of animation resources created in code

ff Refer to the Integer Resource Type web page at https://developer.android.
com/guide/topics/resources/more-resources.html#Integer

Creating a Zoom Animation with a Custom
Transition

The previous recipe, Creating a Card Flip Animation with Fragments, demonstrated a
transition animation using animation resource files. In this recipe, we will create a zoom effect
using animation resources created in code. The application shows a thumbnail image then
expands to an enlarged image when pressed.

The following image contains three screenshots showing the zoom animation in action:

Graphics and Animation

244

Getting ready
Create a new project in Android Studio and call it: <project name>. Use the default Phone
& Tablet options and select Empty Activity when prompted for the Activity Type.

For the image needed for this recipe, we downloaded a picture from www.Pixabay.com to
include in the project source files, but you can use any image.

How to do it...
Once you have your image ready as stated previously, follow these steps:

1.	 Copy your image to the res/drawable folder and name it image.jpg (if not a jpeg
image, keep the original file extension).

2.	 Now open activity_main.xml and replace the existing XML with the following:
<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/
 res/android"
 android:id="@+id/frameLayout"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical"
 android:padding="16dp">
 <ImageButton
 android:id="@+id/imageViewThumbnail"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:scaleType="centerCrop"
 android:background="@android:color/
 transparent"/>
 </LinearLayout>
 <ImageView
 android:id="@+id/imageViewExpanded"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:visibility="invisible" />
</FrameLayout>

3.	 Now open MainActivity.java and declare the following global variables:
private Animator mCurrentAnimator;
private ImageView mImageViewExpanded;

Chapter 9

245

4.	 Add the loadSampledResource() method we created in the Scaling down large
images to avoid Out of Memory exceptions recipe to scale the image:
public Bitmap loadSampledResource(int imageID, int targetHeight,
int targetWidth) {
 final BitmapFactory.Options options = new
 BitmapFactory.Options();
 options.inJustDecodeBounds = true;
 BitmapFactory.decodeResource(getResources(), imageID,
 options);
 final int originalHeight = options.outHeight;
 final int originalWidth = options.outWidth;
 int inSampleSize = 1;
 while ((originalHeight / (inSampleSize *2)) >
 targetHeight && (originalWidth / (inSampleSize *2))
 > targetWidth) {
 inSampleSize *= 2;
 }
 options.inSampleSize =inSampleSize;
 options.inJustDecodeBounds = false;
 return (BitmapFactory.decodeResource(getResources(),
 imageID, options));
}

5.	 Add the following code to the onCreate() method:
final ImageView imageViewThumbnail = (ImageView)
 findViewById(R.id.imageViewThumbnail);
imageViewThumbnail.setImageBitmap(loadSampledResource(
 R.drawable.image, 100, 100));
imageViewThumbnail.setOnClickListener(new
 View.OnClickListener() {
 @Override
 public void onClick(View view) {
 zoomFromThumbnail((ImageView) view);
 }
});
mImageViewExpanded = (ImageView)
 findViewById(R.id.imageViewExpanded);
mImageViewExpanded.setOnClickListener(new
 View.OnClickListener() {
 @Override
 public void onClick(View v) {
 mImageViewExpanded.setVisibility(View.GONE);
 mImageViewExpanded.setImageBitmap(null);
 imageViewThumbnail.setVisibility(View.VISIBLE);
 }
});

Graphics and Animation

246

6.	 Add the following zoomFromThumbnail() method, which handles the actual
animation and is explained later on:
private void zoomFromThumbnail(final ImageView imageViewThumb) {
 if (mCurrentAnimator != null) {
 mCurrentAnimator.cancel();
 }

 final Rect startBounds = new Rect();
 final Rect finalBounds = new Rect();
 final Point globalOffset = new Point();

 imageViewThumb.getGlobalVisibleRect(startBounds);
 findViewById(R.id.frameLayout).getGlobalVisibleRect(
 finalBounds, globalOffset);
 mImageViewExpanded.setImageBitmap(loadSampledResource(
 R.drawable.image, finalBounds.height(),
 finalBounds.width()));

 startBounds.offset(-globalOffset.x, -globalOffset.y);
 finalBounds.offset(-globalOffset.x, -globalOffset.y);

 float startScale;
 if ((float) finalBounds.width() / finalBounds.height()
 > (float) startBounds.width() /
 startBounds.height()) {
 startScale = (float) startBounds.height() /
 finalBounds.height();
 float startWidth = startScale *
 finalBounds.width();
 float deltaWidth = (startWidth -
 startBounds.width()) / 2;
 startBounds.left -= deltaWidth;
 startBounds.right += deltaWidth;
 } else {
 startScale = (float) startBounds.width() /
 finalBounds.width();
 float startHeight = startScale *
 finalBounds.height();
 float deltaHeight = (startHeight -
 startBounds.height()) / 2;
 startBounds.top -= deltaHeight;
 startBounds.bottom += deltaHeight;
 }

Chapter 9

247

 imageViewThumb.setVisibility(View.GONE);
 mImageViewExpanded.setVisibility(View.VISIBLE);
 mImageViewExpanded.setPivotX(0f);
 mImageViewExpanded.setPivotY(0f);

 AnimatorSet animatorSet = new AnimatorSet();
 animatorSet.play(ObjectAnimator.ofFloat(
 mImageViewExpanded, View.X,startBounds.left,
 finalBounds.left))
 .with(ObjectAnimator.ofFloat(
 mImageViewExpanded,
 View.Y,startBounds.top,
 finalBounds.top))
 .with(ObjectAnimator.ofFloat(
 mImageViewExpanded,
 View.SCALE_X, startScale, 1f))
 .with(ObjectAnimator.ofFloat(
 mImageViewExpanded, View.SCALE_Y,
 startScale, 1f));
 animatorSet.setDuration(1000);
 animatorSet.setInterpolator(
 new DecelerateInterpolator());
 animatorSet.addListener(new AnimatorListenerAdapter() {
 @Override
 public void onAnimationEnd(Animator animation) {
 mCurrentAnimator = null;
 }
 @Override
 public void onAnimationCancel(Animator animation) {
 mCurrentAnimator = null;
 }
 });
 animatorSet.start();
 mCurrentAnimator = animatorSet;
}

7.	 Run the application on a device or emulator.

How it works...
First, take a look at the layout file we used. There are two parts—the LinearLayout with
the thumbnail ImageView, and the expanded ImageView. We control the visibility of
both views as the images are clicked. We set the starting thumbnail image using the same
loadSampledResource() as discussed in the Scaling down large images to avoid Out of
Memory exceptions recipe.

Graphics and Animation

248

The zoomFromThumbnail() is where the real work is being done for this demonstration.
There's a lot of code, which breaks down as follows.

First, we store the current animation in mCurrentAnimator, so we can cancel if the
animation is currently running.

Next, we get the starting position of the image using the getGlobalVisibleRect()
method. This returns the screen position of the view. When we get the visible bounds of the
expanded ImageView, we also get the GlobalOffset of the view to offset the coordinates
from app coordinates to screen coordinates.

With the starting bounds set, the next step is to calculate the ending bounds. We want to
keep the same aspect ratio for the final image to prevent it from being skewed. We need to
calculate how the bounds need to be adjusted to keep the aspect ratio within the expanded
ImageView. The screenshot shown in the introduction shows how this image was sized, but
this will vary by image and device.

With the starting and ending bounds calculated, we can now create the animation—actually,
four animations in this case. One animation for each point of the rectangle, as shown in
this code:

animatorSet.play(ObjectAnimator.ofFloat(mImageViewExpanded,
 View.X,startBounds.left, finalBounds.left))
 .with(ObjectAnimator.ofFloat(mImageViewExpanded,
 View.Y,startBounds.top, finalBounds.top))
 .with(ObjectAnimator.ofFloat(mImageViewExpanded,
 View.SCALE_X,startScale, 1f))
 .with(ObjectAnimator.ofFloat(mImageViewExpanded,
 View.SCALE_Y, startScale, 1f));

These two lines of code control how the animation appears:

animatorSet.setDuration(1000);
animatorSet.setInterpolator(new AccelerateInterpolator());

The setDuration() method tells the animator object how long it should take to animate
the translations set previously. setInterpolator() governs how the translation is
made. (The Interpolator was mentioned in the Introduction, and a link is provided further
on.) After starting the animation with the start() method, we save the current animation
to the mCurrentAnimator variable, so the animation can be cancelled, if needed. We
create an AnimatorListenerAdapter to respond to the animation events, to clear the
mCurrentAnimator variable.

Chapter 9

249

There's more...
When the user presses the Expanded Image, the application just hides the expanded
ImageView and sets the thumbnail as visible. We could create a reverse zoom
animation in the mImageViewExpanded click event using the expanded bounds as the
starting point returning to the thumbnail bounds. (It would probably be easier to create the
mImageViewExpanded event in the zoomFromThumbnail() to avoid having to duplicate
calculating the start and stop bounds again.)

Getting the default animation duration
Our code used 1000 milliseconds when setting the duration with setDuration(). We
purposely used a long duration to make it easier to view the animation. We can get the
default Android animation duration using the following code:

getResources().getInteger(android.R.integer.config_shortAnimTime)

See also
ff The first recipe, Scaling down large images to avoid Out of Memory exceptions, for a

detailed explanation of the loadSampledResource() method.

ff Refer to the Interpolator Developer Document at http://developer.android.
com/reference/android/view/animation/Interpolator.html

Chapter 10

251

10
A First Look at

OpenGL ES

In this chapter, we will cover the following topics:

ff Setting up the OpenGL ES environment

ff Drawing shapes on GLSurfaceView

ff Applying projection and camera view while drawing

ff Moving the triangle with rotation

ff Rotating the triangle with user input

Introduction
As we saw in the previous chapter, Android offers many tools for handling graphics and
animations. Though the canvas and drawable objects are designed for custom drawing, when
you need high performance graphics, especially 3D gaming graphics, Android also supports
OpenGL ES. Open Graphics Library for Embedded Systems (OpenGL ES), is targeted for
embedded system. (Embedded systems include consoles and phones.)

This chapter is meant to serve as an introduction to using OpenGL ES on Android. As usual, we'll
provide the steps and explain how things work, but we aren't going to be digging into the math
or technical details of OpenGL. If you are already familiar with OpenGL ES from other platforms,
such as iOS, this chapter should get you up and running quickly. If you are new to OpenGL,
hopefully, these recipes will help you decide whether this is an area you want to pursue.

A First Look at OpenGL ES

252

Android supports the following versions of OpenGL:

ff OpenGL ES 1.0: Android 1.0

ff OpenGL ES 2.0: Introduced in Android 2.2 (API 8)

ff OpenGL ES 3.0: Introduced in Android 4.3 (API 18)

ff OpenGL ES 3.1: Introduced in Android 5.0 (API 21)

The recipes for this chapter are of an introductory nature and target OpenGL ES 2.0 and
higher. OpenGL ES 2.0 is available for nearly all devices currently available. Unlike OpenGL
ES 2.0 and lower, OpenGL 3.0 and higher require driver implementation from the hardware
manufacturer. This means, even if your application is running on Android 5.0, OpenGL 3.0
and higher may not be available. Therefore, it's a good programming practice to check the
available OpenGL versions at runtime. Alternatively, if your application requires 3.0 and higher
features, you can add a <uses-feature/> element to your Android manifest. (We'll discuss
this in the first recipe that follows.)

Unlike the other chapters in this book, this chapter is written more as a tutorial with each
recipe building on lessons learned from the previous recipe. The Getting ready section of
each recipe will clarify the prerequisites.

Set up the OpenGL ES environment
Our first recipe will start by showing the steps to set up an activity to use an OpenGL
GLSurfaceView. Similar to the Canvas, the GLSurfaceView is where your will perform your
OpenGL drawing. As this is the starting point, the other recipes will refer to this recipe as the
base step when they need a GLSurfaceView created.

Getting ready
Create a new project in Android Studio and call it: SetupOpenGL. Use the default Phone &
Tablet options and select Empty Activity when prompted for Activity Type.

How to do it...
We'll start by indicating the application's use of OpenGL in the Android Manifest, and then
we'll add the OpenGL classes to the activity. Here are the steps:

1.	 Open the Android Manifest and add the following XML:
<uses-feature android:glEsVersion="0x00020000"
android:required="true" />

Chapter 10

253

2.	 Open MainActivity.java and add the following global variables:
private GLSurfaceView mGLSurfaceView;

3.	 Add the following inner class to the MainActivity class:
class CustomGLSurfaceView extends GLSurfaceView {

 private final GLRenderer mGLRenderer;

 public CustomGLSurfaceView(Context context){
 super(context);
 setEGLContextClientVersion(2);
 mGLRenderer = new GLRenderer();
 setRenderer(mGLRenderer);
 }
}

4.	 Add another inner class to the MainActivity class:
class GLRenderer implements GLSurfaceView.Renderer {
 public void onSurfaceCreated(GL10 unused, EGLConfig config) {
 GLES20.glClearColor(0.5f, 0.5f, 0.5f, 1.0f);
 }
 public void onDrawFrame(GL10 unused) {
 GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT);
 }
 public void onSurfaceChanged(GL10 unused, int width, int
height) {
 GLES20.glViewport(0, 0, width, height);
 }
}

5.	 Add the following code to the existing onCreate() method:
mGLSurfaceView = new CustomGLSurfaceView(this);
setContentView(mGLSurfaceView);

6.	 You're ready to run the application on a device or emulator.

How it works...
If you ran the preceding application, you saw the activity created and the background set to
gray. Since these are the basic steps to setting up OpenGL, you'll be reusing this code for the
other recipes in this chapter as well. Here is the process explained in detail:

A First Look at OpenGL ES

254

Declaring OpenGL in the Android Manifest
We start by declaring our requirement to use OpenGL ES version 2.0 in the Android Manifest
with this line:

<uses-feature android:glEsVersion="0x00020000" android:required="true"
/>

If we were using Version 3.0, we would use this:

<uses-feature android:glEsVersion="0x00030000" android:required="true"
/>

For Version 3.1, use this:

<uses-feature android:glEsVersion="0x00030001" android:required="true"
/>

Extending the GLSurfaceView class
Create a custom OpenGL SurfaceView class by extending GLSurfaceView, as we do in
this code:

class CustomGLSurfaceView extends GLSurfaceView {

 private final GLRenderer mGLRenderer;

 public CustomGLSurfaceView(Context context){
 super(context);
 setEGLContextClientVersion(2);
 mGLRenderer = new GLRenderer();
 setRenderer(mGLRenderer);
 }
}

Here, we instantiate an OpenGL rendered class and pass it to the GLSurfaceView class with
the setRenderer() method. The OpenGL SurfaceView provides a surface for our OpenGL
drawing, similar to the Canvas and SurfaceView objects. The actual drawing is done in the
Renderer, which we'll create next:

Chapter 10

255

Creating an OpenGL rendered class
The last step is to create the GLSurfaceView.Renderer class and implement the following
three callbacks:

ff onSurfaceCreated()

ff onDrawFrame()

ff onSurfaceChanged()

Here is the code:

class GLRenderer implements GLSurfaceView.Renderer {
 public void onSurfaceCreated(GL10 unused, EGLConfig config) {
 GLES20.glClearColor(0.5f, 0.5f, 0.5f, 1.0f);
 }
 public void onDrawFrame(GL10 unused) {
 GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT);
 }
 public void onSurfaceChanged(GL10 unused, int width, int height) {
 GLES20.glViewport(0, 0, width, height);
 }
}

Right now, all we're doing with this class is setting up the callbacks and clearing the screen
using the color we specify with glClearColor() (gray in this case).

There's more...
With the OpenGL environment set up, we'll continue to the next recipe where we'll actually
draw on the view.

Drawing shapes on GLSurfaceView
The previous recipe set up the activity to use OpenGL. This recipe will continue by showing
how to draw on OpenGLSurfaceView.

First, we need to define the shape. With OpenGL, it is important to realize the order in which
the vertices of a shape are defined are very important, as they determine the front (face) and
back of the shape. It's customary (and the default behavior) to define the vertices counter
clockwise. (Though this behavior can be changed, it requires additional code and is not
standard practice.)

A First Look at OpenGL ES

256

It's also important to understand the OpenGL screen coordinate system, as it differs from the
Android canvas. The default coordinate system defines (0,0,0) as the center of the screen.
The four edge points are as follows:

ff Top left: (-1.0, 1.0, 0)

ff Top right: (1.0, 1.0, 0)

ff Bottom left: (-1.0, -1.0, 0)

ff Bottom right: (1.0, -1.0, 0)

The Z axis comes straight out of the screen or straight behind.

Here is an illustration showing the X, Y, and Z axes:

We're going to create a Triangle class since it is the base shape. In OpenGL, you generally
use a collection of triangles to create objects. To draw a shape with OpenGL, we need to
define the following:

ff Vertex shader: This is to draw the shape

ff Fragment shader: This is to color the shape

ff Program: This is an OpenGL ES object for the preceding shaders

The shaders are defined using OpenGL Shading Language (GLSL), and then compiled and
added to the OpenGL program object.

Here are two screenshots showing the triangle in both portrait and landscape orientation:

Chapter 10

257

Getting ready
Create a new project in Android Studio and call it: ShapesWithOpenGL. Use the default
Phone & Tablet options and select Empty Activity when prompted for Activity Type.

This recipe uses the OpenGL environment created in the previous recipe Set up the Open GL
environment. Refer to the previous recipe if you have not already completed those steps.

A First Look at OpenGL ES

258

How to do it...
As indicated previously, we'll be using the OpenGL environment created in the previous recipe.
The steps that follow will walk you through creating a class for the triangle shape and drawing
it on the GLSurfaceView:

1.	 Create a new Java class called Triangle.

2.	 Add the following global declarations to the Triangle class:
private final String vertexShaderCode =
 "attribute vec4 vPosition;" +
 "void main() {" +
 " gl_Position = vPosition;" +
 "}";

private final String fragmentShaderCode =
 "precision mediump float;" +
 "uniform vec4 vColor;" +
 "void main() {" +
 " gl_FragColor = vColor;" +
 "}";

final int COORDS_PER_VERTEX = 3;
float triangleCoords[] = {
 0.0f, 0.66f, 0.0f,
 -0.5f, -0.33f, 0.0f,
 0.5f, -0.33f, 0.0f
};

float color[] = { 0.63f, 0.76f, 0.22f, 1.0f };

private final int mProgram;
private FloatBuffer vertexBuffer;
private int mPositionHandle;
private int mColorHandle;
private final int vertexCount = triangleCoords.length / COORDS_
PER_VERTEX;
private final int vertexStride = COORDS_PER_VERTEX * 4;

3.	 Add the following loadShader() method to the Triangle class:
public int loadShader(int type, String shaderCode){
 int shader = GLES20.glCreateShader(type);
 GLES20.glShaderSource(shader, shaderCode);
 GLES20.glCompileShader(shader);
 return shader;
}

Chapter 10

259

4.	 Add the Triangle constructor, as shown:
public Triangle() {
 int vertexShader = loadShader(
 GLES20.GL_VERTEX_SHADER,
 vertexShaderCode);
 int fragmentShader = loadShader(
 GLES20.GL_FRAGMENT_SHADER,
 fragmentShaderCode);
 mProgram = GLES20.glCreateProgram();
 GLES20.glAttachShader(mProgram, vertexShader);
 GLES20.glAttachShader(mProgram, fragmentShader);
 GLES20.glLinkProgram(mProgram);

 ByteBuffer bb = ByteBuffer.allocateDirect(
 triangleCoords.length * 4);
 bb.order(ByteOrder.nativeOrder());

 vertexBuffer = bb.asFloatBuffer();
 vertexBuffer.put(triangleCoords);
 vertexBuffer.position(0);
}

5.	 Add the draw() method, as follows:
public void draw() {
 GLES20.glUseProgram(mProgram);
 mPositionHandle = GLES20.glGetAttribLocation(mProgram,
"vPosition");
 GLES20.glEnableVertexAttribArray(mPositionHandle);
 GLES20.glVertexAttribPointer(mPositionHandle,
 COORDS_PER_VERTEX,
 GLES20.GL_FLOAT, false,
 vertexStride, vertexBuffer);
 mColorHandle = GLES20.glGetUniformLocation(mProgram,
"vColor");
 GLES20.glUniform4fv(mColorHandle, 1, color, 0);
 GLES20.glDrawArrays(GLES20.GL_TRIANGLES, 0, vertexCount);
 GLES20.glDisableVertexAttribArray(mPositionHandle);
}

6.	 Now open MainActivity.java and add a Triangle variable to the GLRenderer
class as follows:
private Triangle mTriangle;

7.	 Initialize the Triangle variable in the onSurfaceCreated() callback, as follows:
mTriangle = new Triangle();

A First Look at OpenGL ES

260

8.	 Call the draw() method in the onDrawFrame() callback:
mTriangle.draw();

9.	 You're ready to run the application on a device or emulator.

How it works...
As mentioned in the introduction, to draw with OpenGL, we first have to define the shaders,
which we do with the following code:

private final String vertexShaderCode =
 "attribute vec4 vPosition;" +
 "void main() {" +
 " gl_Position = vPosition;" +
 "}";

private final String fragmentShaderCode =
 "precision mediump float;" +
 "uniform vec4 vColor;" +
 "void main() {" +
 " gl_FragColor = vColor;" +
 "}";

Since this is uncompiled OpenGL Shading Language (OpenGLSL), the next step is to compile
and attach it to our OpenGL object, which we do with the following two OpenGL ES methods:

ff glAttachShader()

ff glLinkProgram()

After setting up the shaders, we create ByteBuffer to store the triangle vertices, which are
defined in triangleCoords. The draw() method is where the actual drawing occurs using
the GLES20 library calls, which is called from the onDrawFrame() callback.

There's more...
You may have noticed, from the screenshots in the introduction, that the triangles in the
Portrait and Landscape do look identical. As you can see from the code, we make no
distinction in the orientation when drawing. We'll explain why this is happening and show
how to correct this issue in the next recipe.

See also
For more information on the OpenGL Shading Language, refer the following link:

https://www.opengl.org/documentation/glsl/

Chapter 10

261

Applying Projection and Camera View
while drawing

As we saw in the previous recipe, when we draw our shape to the screen, the shape is skewed
by the screen orientation. The reason for this is because, by default, OpenGL assumes a
perfectly square screen. We mentioned before, the default screen coordinates for the top
right is (1,1,0) and bottom left is (-1,-1,0).

Since most device screens are not perfectly square, we need to map the display coordinates
to match our physical device. In OpenGL, we do this with Projection. This recipe will show how
to use Projection to match the GLSurfaceView coordinates with the device coordinates. Along
with the Projection, we'll also show how to set the Camera View. Here's a screenshot showing
the final result:

Getting ready
Create a new project in Android Studio and call it: ProjectionAndCamera. Use the default
Phone & Tablet options and select Empty Activity when prompted for Activity Type.

This recipe builds on the previous recipe Drawing shapes on the GLSurfaceView. If you have
not already typed in the previous recipe, do so before starting these steps.

A First Look at OpenGL ES

262

How to do it...
As stated previously, this recipe will build on the previous recipe, so complete those steps
before starting. We will be modifying the previous code to add projection and camera view
to the drawing calculations. Here are the steps:

1.	 Open the Triangle class and add the following global declaration to the existing
declarations:
private int mMVPMatrixHandle;

2.	 Add a matrix variable to vertexShaderCode and use it in the position calculation.
Here is the final result:
private final String vertexShaderCode =
 "attribute vec4 vPosition;" +
 "uniform mat4 uMVPMatrix;" +
 "void main() {" +
 " gl_Position = uMVPMatrix * vPosition;" +
 "}";

3.	 Change the draw() method to pass in a matrix parameter as follows:
public void draw(float[] mvpMatrix) {

4.	 To use the transformation matrix, add the following code to the draw() method
just before the GLES20.glDrawArrays() method:
mMVPMatrixHandle = GLES20.glGetUniformLocation(mProgram,
"uMVPMatrix");
GLES20.glUniformMatrix4fv(mMVPMatrixHandle, 1, false, mvpMatrix,
0);

5.	 Open MainActivity.java and add the following class variables to the
GLRenderer class:
private final float[] mMVPMatrix = new float[16];
private final float[] mProjectionMatrix = new float[16];
private final float[] mViewMatrix = new float[16];

6.	 Modify the onSurfaceChanged() callback to calculate the position matrix
as follows:
public void onSurfaceChanged(GL10 unused, int width, int height) {
 GLES20.glViewport(0, 0, width, height);
 float ratio = (float) width / height;
 Matrix.frustumM(mProjectionMatrix, 0, -ratio, ratio, -1, 1, 3,
7);
}

Chapter 10

263

7.	 Modify the onDrawFrame() callback to calculate the Camera View as follows:
public void onDrawFrame(GL10 unused) {
 Matrix.setLookAtM(mViewMatrix, 0, 0, 0, -3, 0f, 0f, 0f, 0f,
 1.0f, 0.0f);
 Matrix.multiplyMM(mMVPMatrix, 0, mProjectionMatrix, 0,
 mViewMatrix, 0);
 GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT);
 mTriangle.draw(mMVPMatrix);
}

8.	 You're ready to run the application on a device or emulator.

How it works...
First, we modify the vertexShaderCode to include a matrix variable. We calculate the
matrix in the onSurfaceChanged() callback using the height and width, which are passed
in as parameters. We pass the transformation matrix to the draw() method to use it when
calculating the position to draw.

Before we call the draw() method, we calculate the camera view. These two lines of code
calculate the camera view:

Matrix.setLookAtM(mViewMatrix, 0, 0, 0, -3, 0f, 0f, 0f, 0f, 1.0f,
0.0f);
Matrix.multiplyMM(mMVPMatrix, 0, mProjectionMatrix, 0, mViewMatrix,
0);

Without this code, there would actually be no triangle drawn as the camera perspective would
not "see" our vertices. (This goes back to our discussion on how the order of the vertices
dictate the front and back of the image.)

When you run the program now, you'll see the output shown in the Introduction. Notice we
have a uniform triangle now, even when the display is rotated.

There's more...
In the next recipe, we will start showing the power of OpenGL by rotating the triangle.

Moving the triangle with rotation
What we've demonstrated so far with OpenGL would probably be easier using the traditional
canvas or drawable objects. This recipe will show a bit of the power of OpenGL by rotating the
triangle. Not that we can't create movement with the other drawing methods, but how easily
we can do this with OpenGL!

A First Look at OpenGL ES

264

This recipe will demonstrate how to rotate the triangle, as this screenshot shows:

Getting ready
Create a new project in Android Studio and call it: CreatingMovement. Use the default
Phone & Tablet options and select Empty Activity when prompted for Activity Type.

This recipe builds on the previous recipe Applying Projection and Camera View While Drawing.
If you have not already typed in the previous recipe, do so before continuing.

How to do it...
Since we are continuing from the previous recipe, we have very little work to do. Open
MainActivity.java and follow these steps:

1.	 Add a Matrix to the GLRendered class:
private float[] mRotationMatrix = new float[16];

2.	 In the onDrawFrame() callback, replace the existing mTriangle.
draw(mMVPMatrix); statement with the following code:
float[] tempMatrix = new float[16];
long time = SystemClock.uptimeMillis() % 4000L;

Chapter 10

265

float angle = 0.090f * ((int) time);
Matrix.setRotateM(mRotationMatrix, 0, angle, 0, 0, -1.0f);
Matrix.multiplyMM(tempMatrix, 0, mMVPMatrix, 0, mRotationMatrix,
0);
mTriangle.draw(tempMatrix);

3.	 You're ready to run the application on a device or emulator.

How it works...
We're using the Matrix.setRotateM() method to calculate a new rotation matrix based
on the angle we pass in. For this example, we're using the system uptime to calculate an
angle. We can use whatever method we want to derive an angle, such as a sensor reading
or touch events.

There's more...
Using the system clock provides the added benefit of creating continuous movement, which
certainly looks better for demonstration purposes. The next recipe will demonstrate how to
use user input to derivate an angle for rotating the triangle.

The render mode
OpenGL offers a setRenderMode() option to draw only when the view is dirty. This can be
enabled by adding the following code to the CustomGLSurfaceView() constructor just
below the setRenderer() call:

setRenderMode(GLSurfaceView.RENDERMODE_WHEN_DIRTY);

This will cause the display to update once, then wait until we request an update with
requestRender().

Rotating the triangle with user input
The previous example demonstrated rotating the triangle based on the system clock. This
created a continuously rotating triangle, depending on the render mode we used. But what
if you wanted to respond to the input from the user?

In this recipe, we'll show how to respond to user input by overriding the onTouchEvent()
callback from GLSurfaceView. We'll still rotate the triangle using the Matrix.
setRotateM() method, but instead of deriving an angle from the system time,
we'll calculate an angle based on the touch location.

A First Look at OpenGL ES

266

Here's a screenshot showing this recipe running on a physical device (to highlight the touch,
the Show touches developer option is enabled):

Getting ready
Create a new project in Android Studio and call it: RotateWithUserInput. Use the default
Phone & Tablet options and select Empty Activity when prompted for Activity Type.

This recipe demonstrates an alternative approach to the previous recipe and therefore will be
based on Applying projection and camera view while drawing (the same starting point as the
previous recipe.)

How to do it...
As stated previously, we will continue, not from the previous recipe, but from the Applying
projection and camera view while drawing recipe. Open MainActivity.java and follow
these steps:

1.	 Add the following global variables to the MainActivity class:
private float mCenterX=0;
private float mCenterY=0;

Chapter 10

267

2.	 Add the following code the GLRendered class:
private float[] mRotationMatrix = new float[16];
public volatile float mAngle;
public void setAngle(float angle) {
 mAngle = angle;
}

3.	 In the same class, modify the onDrawFrame() method by replacing the existing
mTriangle.draw(mMVPMatrix); statement with the following code:
float[] tempMatrix = new float[16];
Matrix.setRotateM(mRotationMatrix, 0, mAngle, 0, 0, -1.0f);
Matrix.multiplyMM(tempMatrix, 0, mMVPMatrix, 0, mRotationMatrix,
0);
mTriangle.draw(tempMatrix);

4.	 Add the following code to the onSurfaceChanged() callback:
mCenterX=width/2;
mCenterY=height/2;

5.	 Add the following code to the CustomGLSurfaceView constructor, which is below
setRenderer():
setRenderMode(GLSurfaceView.RENDERMODE_WHEN_DIRTY);

6.	 Add the following onTouchEvent() to the CustomGLSurfaceView class:
@Override
public boolean onTouchEvent(MotionEvent e) {
 float x = e.getX();
 float y = e.getY();
 switch (e.getAction()) {
 case MotionEvent.ACTION_MOVE:
 double angleRadians = Math.atan2(y-mCenterY,x-mCenterX);
 mGLRenderer.setAngle((float)Math.toDegrees
 (-angleRadians));
 requestRender();
 }
 return true;
}

7.	 You're ready to run the application on a device or emulator.

A First Look at OpenGL ES

268

How it works...
The obvious difference between this example and the previous recipe is how we derive the
angle to pass to the Matrix.setRotateM() call. We also changed the GLSurfaceView
render mode using setRenderMode() to only draw on request. We made the request using
requestRender() after calculating a new angle in the onTouchEvent() callback.

We also demonstrated the importance of deriving our own GLSurfaceView class. Without
our CustomGLSurfaceView class, we would not have a way to override the onTouchEvent
callback, or any other callbacks from GLSurfaceView.

There's more...
This concludes the OpenGL ES recipes but we've only just touched upon the power of OpenGL.
If you're serious about learning OpenGL, see the links in the next section and check out one of
the many books written on OpenGL.

It's also worth checking out one of the many frameworks available, such as the Unreal Engine:

Unreal Engine 4 is a complete suite of game development tools made by
game developers, for game developers.
https://www.unrealengine.com/what-is-unreal-engine-4

See also
ff OpenGL: The Industry Standard for High Performance Graphics

https://www.opengl.org/

ff OpenGL ES: The Standard for Embedded Accelerated 3D Graphics
https://www.khronos.org/opengles/

ff Unreal Engine: Android Quick Start

https://docs.unrealengine.com/latest/INT/Platforms/Android/
GettingStarted/index.html

Chapter 11

269

11
Multimedia

In this chapter, we will cover the following topics:

ff Playing sound effects with SoundPool

ff Playing audio with MediaPlayer

ff Responding to hardware media controls in your app

ff Taking a photo with the default camera app

ff Taking a photo using the (old) Camera API

ff Taking a photo using the Camera2 (the new) API

Introduction
Now that we've explored graphics and animations in the previous chapters, it's time to look at
the sound options available in Android. The two most popular options to play sound include:

ff SoundPool: This is for short sound clips

ff MediaPlayer: This is designed for larger sound files (like music) and video files

The first two recipes will look at using these libraries. We'll also look at how to use hardware
related to sound, such as the volume controls and media playback controls (play, pause, and
so on often found on headphones).

The rest of the chapter will focus on using the camera, both indirectly through Intents (to pass
the camera request to the default camera application) and directly using the camera APIs.
We'll examine the new Camera2 APIs released with Android 5.0 Lollipop (API 21), but we'll also
look at the original Camera API since roughly 75 percent of the market doesn't have Lollipop
yet. (To help you take advantage of the new features offered in the Camera2 API, we'll show
a newer method for using the old Camera APIs to make it easier to use both Camera APIs in
your own application.)

Multimedia

270

Playing sound effects with SoundPool
When you need sound effects in your application, SoundPool is usually a good starting point.

SoundPool is interesting in that it allows us to create special effects with our sounds by
changing the play rate and by allowing multiple sounds to play simultaneously.

Popular audio file types supported include:

ff 3GPP (.3gp)

ff 3GPP (.3gp)

ff FLAC (.flac)

ff MP3 (.mp3)

ff MIDI Type 0 and 1 (.mid, .xmf, and .mxmf)

ff Ogg (.ogg)

ff WAVE (.wav)

See the Supported Media Formats link for a complete list, including network protocols.

As is common in Android, new releases to the OS bring changes to the APIs. The SoundPool
is no exception and the original SoundPool constructor was deprecated in Lollipop (API 21).
Rather than setting our minimum API to 21 or relying on deprecated code (that may stop
working at some point), we'll implement both the old and the new approach and check the OS
version at runtime to use the appropriate method.

This recipe will demonstrate how to play sound effects using the Android SoundPool library.
To demonstrate playing sounds simultaneously, we'll create two buttons, and each will play
a sound when pressed.

Getting ready
Create a new project in Android Studio and call it: SoundPool. Use the default Phone &
Tablet options, and select Empty Activity when prompted for Activity Type.

To demonstrate playing sounds simultaneously, we need at least two audio files in the project.
We went to SoundBible.com (http://soundbible.com/royalty-free-sounds-5.html)
and found two royalty-free public domain sounds to include in the download project files:

The first sound is a longer playing sound:

http://soundbible.com/2032-Water.html

The second sound is shorter:

http://soundbible.com/1615-Metal-Drop.html

http://soundbible.com/royalty-free-sounds-5.html
http://soundbible.com/2032-Water.html
http://soundbible.com/2032-Water.html

Chapter 11

271

How to do it...
As explained previously, we'll need two audio files to include in the project. Once you have your
sound files ready, follow these steps:

1.	 Create a new raw folder (File | New | Android resource directory) and chose raw in
the Resource type dropdown.

2.	 Copy your sound files to res/raw as sound_1 and sound_2. (Keep their original
extensions.)

3.	 Open activity_main.xml and replace the existing TextView with the following
Buttons:
<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Play Sound 1"
 android:id="@+id/button1"
 android:layout_centerInParent="true"
 android:onClick="playSound1"/>
<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Play Sound 2"
 android:id="@+id/button2"
 android:layout_below="@+id/button1"
 android:layout_centerHorizontal="true"
 android:onClick="playSound2"/>

4.	 Now open ActivityMain.java and add the following global variables:
HashMap<Integer, Integer> mHashMap= null;
SoundPool mSoundPool;

5.	 Modify the existing onCreate() method, as follows:
final Button button1=(Button)findViewById(R.id.button1);
button1.setEnabled(false);
final Button button2=(Button)findViewById(R.id.button2);
button2.setEnabled(false);

if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP)
{
 createSoundPoolNew();
}else{
 createSoundPooolOld();
}

Multimedia

272

mSoundPool.setOnLoadCompleteListener(new
 SoundPool.OnLoadCompleteListener() {
 @Override
 public void onLoadComplete(SoundPool soundPool, int
 sampleId, int status) {
 button1.setEnabled(true);
 button2.setEnabled(true);
 }
});
mHashMap = new HashMap<>();
mHashMap.put(1, mSoundPool.load(this, R.raw.sound_1, 1));
mHashMap.put(2, mSoundPool.load(this, R.raw.sound_2, 1));

6.	 Add the createSoundPoolNew() method:
@TargetApi(Build.VERSION_CODES.LOLLIPOP)
private void createSoundPoolNew() {
 AudioAttributes audioAttributes = new
 AudioAttributes.Builder()
 .setUsage(AudioAttributes.USAGE_MEDIA)
 .setContentType(
 AudioAttributes.CONTENT_TYPE_SONIFICATION)
 .build();
 mSoundPool = new SoundPool.Builder()
 .setAudioAttributes(audioAttributes)
 .setMaxStreams(2)
 .build();
}

7.	 Add the createSoundPooolOld() method:
@SuppressWarnings("deprecation")
private void createSoundPooolOld(){
 mSoundPool = new SoundPool(2, AudioManager.STREAM_MUSIC, 0);
}

8.	 Add the button onClick() methods:
public void playSound1(View view){
 mSoundPool.play(mHashMap.get(1), 0.1f, 0.1f, 1, 0,
 1.0f);
}

public void playSound2(View view){
 mSoundPool.play(mHashMap.get(2), 0.9f, 0.9f, 1, 1,
 1.0f);
}

Chapter 11

273

9.	 Override the onStop() callback as follows:
protected void onStop() {
 super.onStop();
 mSoundPool.release();
}

10.	 Run the application on a device or emulator.

How it works...
The first detail to notice is how we construct the object itself. As we mentioned in the
introduction, the SoundPool constructor was changed in Lollipop (API 21). The old constructor
was deprecated in favor of using SoundPool.Builder(). With a constantly changing
environment like Android, changes in the API are very common, so it's a good idea to learn
how to work with the changes. As you can see, it's not difficult in this case. We just check the
current OS version and call the appropriate method. It is worth noting the method annotations:

@TargetApi(Build.VERSION_CODES.LOLLIPOP)

And:

@SuppressWarnings("deprecation")

After creating SoundPool, we set an setOnLoadCompleteListener() listener. Enabling
the buttons is mostly for demonstration purposes to illustrate that SoundPool needs to load
the sound resources before they are available.

The final point to make on using SoundPool is the call to play(). We need to pass in the
soundID, which was returned when we loaded the sound using load(). The Play() gives
us a few options, including sound volume (left and right), loop count, and playback rate. To
demonstrate the flexibility, we play the first sound (which is longer) at a lower volume to create
more of a background effect with the running water. The second sound plays at a higher
volume and we play it twice.

There's more...
If you only need a basic sound effect, such as a click, you can use the AudioManager
playSoundEffect() method. Here's an example:

AudioManager audioManager =(AudioManager)
this.getSystemService(Context.AUDIO_SERVICE);
audioManager.playSoundEffect(SoundEffectConstants.CLICK);

You can only specify a sound from the SoundEffectConstants; you cannot use your own
sound files.

Multimedia

274

See also
ff Developer Docs: SoundPool

https://developer.android.com/reference/android/media/
SoundPool.html

ff Developer Docs: AudioManager

https://developer.android.com/reference/android/media/
AudioManager.html

Playing audio with MediaPlayer
MediaPlayer is probably one of the most important classes for adding multimedia capability to
your applications. It supports the following media sources:

ff Project resources

ff Local files

ff External resources (such as URLs, including streaming)

MediaPlayer supports the following popular audio files:

ff 3GPP (.3gp)

ff 3GPP (.3gp)

ff FLAC (.flac)

ff MP3 (.mp3)

ff MIDI Type 0 and 1 (.mid, .xmf, and .mxmf)

ff Ogg (.ogg)

ff WAVE (.wav)

And these popular file types:

ff 3GPP (.3gp)

ff Matroska (.mkv)

ff WebM (.webm)

ff MPEG-4 (.mp4, .m4a)

See the Supported Media Formats link for a complete list, including network protocols.

This recipe will demonstrate how to set up MediaPlayer in your app to play a sound included
with your project. (For a complete review of the full capability offered by MediaPlayer, see the
Developer Docs link at the end of this recipe.)

https://developer.android.com/reference/android/media/AudioManager.html
https://developer.android.com/reference/android/media/AudioManager.html
https://developer.android.com/reference/android/media/AudioManager.html

Chapter 11

275

Getting ready
Create a new project in Android Studio and call it: MediaPlayer. Use the default Phone &
Tablet options and select Empty Activity when prompted for Activity Type.

We will also need a sound for this recipe and will use the same longer playing "water" sound
used in the previous recipe.

The first sound is a longer playing sound:

http://soundbible.com/2032-Water.html

How to do it...
As explained previously, we'll need a sound file to include in the project. Once you have your
sound file ready, follow these steps:

1.	 Create a new raw folder (File | New | Android resource directory) and chose raw in
the resource type dropdown

2.	 Copy your sound file to res/raw as sound_1. (Keep the original extension.)

3.	 Open activity_main.xml and replace the existing TextView with the following
buttons:
<Button
 android:layout_width="100dp"
 android:layout_height="wrap_content"
 android:text="Play"
 android:id="@+id/buttonPlay"
 android:layout_above="@+id/buttonPause"
 android:layout_centerHorizontal="true"
 android:onClick="buttonPlay" />
<Button
 android:layout_width="100dp"
 android:layout_height="wrap_content"
 android:text="Pause"
 android:id="@+id/buttonPause"
 android:layout_centerInParent="true"
 android:onClick="buttonPause"/>
<Button
 android:layout_width="100dp"
 android:layout_height="wrap_content"
 android:text="Stop"
 android:id="@+id/buttonStop"

http://soundbible.com/2032-Water.html
http://soundbible.com/2032-Water.html

Multimedia

276

 android:layout_below="@+id/buttonPause"
 android:layout_centerHorizontal="true"
 android:onClick="buttonStop"/>

4.	 Now open ActivityMain.java and add the following global variable:
MediaPlayer mMediaPlayer;

5.	 Add the buttonPlay() method:
public void buttonPlay(View view){
 if (mMediaPlayer==null) {
 mMediaPlayer = MediaPlayer.create(this, R.raw.sound_1);
 mMediaPlayer.setLooping(true);
 mMediaPlayer.start();
 } else {
 mMediaPlayer.start();
 }
}

6.	 Add the buttonPause() method:
public void buttonPause(View view){
 if (mMediaPlayer!=null && mMediaPlayer.isPlaying()) {
 mMediaPlayer.pause();
 }
}

7.	 Add the buttonStop() method:
public void buttonStop(View view){
 if (mMediaPlayer!=null) {
 mMediaPlayer.stop();
 mMediaPlayer.release();
 mMediaPlayer = null;
 }
}

8.	 Finally, override the onStop() callback with the following code:
protected void onStop() {
 super.onStop();
 if (mMediaPlayer!=null) {
 mMediaPlayer.release();
 mMediaPlayer = null;
 }
}

9.	 You're ready to run the application on a device or emulator.

Chapter 11

277

How it works...
The code here is pretty straightforward. We create MediaPlayer with our sound and start
playing the sound. The buttons will replay, pause, and stop accordingly.

Even this basic example illustrates one very important concept regarding MediaPlayer, and
that is the state. If you're making serious use of MediaPlayer, review the link provided below
for detailed information.

There's more...
To make our demonstration easier to follow, we use the UI thread for all our operations.
For this example, using a short audio file included with the project, we aren't likely going
to experience any UI delays. In general, it's a good idea to use a background thread when
preparing MediaPlayer. To make this common task easier, MediaPlayer already includes an
asynchronous prepare method called prepareAsync(). The following code will create an
OnPreparedListener() listener and use the prepareAsync() method:

mMediaPlayer = new MediaPlayer();
mMediaPlayer.setOnPreparedListener(new MediaPlayer.
OnPreparedListener() {
 @Override
 public void onPrepared(MediaPlayer mp) {
 mMediaPlayer.start();
 }
});
try {
 mMediaPlayer.setDataSource(*//*URI, URL or path here*//*));
} catch (IOException e) {
 e.printStackTrace();
}
mMediaPlayer.prepareAsync();

Playing music in the background
Our example is meant to play audio when the application is in the foreground, and will release
the MediaPlayer resources in the onStop() callback. What if you are creating a music player
and want to play music in the background, even when the user is using another application?
In that scenario, you'll want to use MediaPlayer in a service, instead of an Activity. You'll use
the MediaPlayer library the same way; you'll just need to pass information (such as sound
selection) from the UI to your service.

Multimedia

278

Note that since a service runs in the same UI thread as the activities, you
still do not want to perform potentially blocking operations in a service.
MediaPlayer does handle background threads to prevent blocking your
UI Thread, otherwise, you would want to perform threading yourself. (See
Chapter 14, Getting Your App Ready for the Play Store for more information
on threading and options.)

Using hardware volume keys to control your app's audio volume
If you want the volume controls to control the volume in your app, use the
setVolumeControlStream() method to specify your application's audio stream, as follows:

setVolumeControlStream(AudioManager.STREAM_MUSIC);

See the following AudioManager link for the other stream options.

See also
ff Supported Media Formats: https://developer.android.com/guide/

appendix/media-formats.html

ff Developer Docs: MediaPlayer http://developer.android.com/reference/
android/media/MediaPlayer.html

ff Developer Docs: AudioManager: https://developer.android.com/
reference/android/media/AudioManager.html

Responding to hardware media controls
in your app

Having your app respond to media controls, such as Play, Pause, Skip, and so on, is a nice
touch your users will appreciate.

Android makes this possible through the media library. As with the Playing sound effects
with SoundPool recipe earlier, the Lollipop release changed how this is done. Unlike the
SoundPool example, this recipe is able to take advantage of another approach—the
compatibility library.

This recipe will show you how to set up MediaSession to respond to the hardware buttons,
which will work on Lollipop and later, as well as previous Lollilop versions using the
MediaSessionCompat library. (The Compatibility Library will take care of checking the
OS version and using the correct API calls automatically.)

https://developer.android.com/guide/appendix/media-formats.html
https://developer.android.com/guide/appendix/media-formats.html

Chapter 11

279

Getting ready
Create a new project in Android Studio and call it: HardwareMediaControls. Use the default
Phone & Tablet options and select Empty Activity when prompted for the Activity Type.

How to do it...
We'll just be using Toasts messages to respond to the hardware events and therefore will not
need to make any changes to the activity layout. To get started, open ActivityMain.java
and follow these steps:

1.	 Create the following mMediaSessionCallback to respond to the media buttons:
MediaSessionCompat.Callback mMediaSessionCallback = new
MediaSessionCompat.Callback() {
 @Override
 public void onPlay() {
 super.onPlay();
 Toast.makeText(MainActivity.this, "onPlay()",
 Toast.LENGTH_SHORT).show();
 }
 @Override
 public void onPause() {
 super.onPause();
 Toast.makeText(MainActivity.this, "onPause()",
 Toast.LENGTH_SHORT).show();
 }
 @Override
 public void onSkipToNext() {
 super.onSkipToNext();
 Toast.makeText(MainActivity.this, "onSkipToNext()",
 Toast.LENGTH_SHORT).show();
 }
 @Override
 public void onSkipToPrevious() {
 super.onSkipToPrevious();
 Toast.makeText(MainActivity.this,
 "onSkipToPrevious()", Toast.LENGTH_SHORT).show();
 }
};

Multimedia

280

2.	 Add the following code to the existing onCreate() callback:
MediaSessionCompat mediaSession =
 new MediaSessionCompat(this,
 getApplication().getPackageName());
mediaSession.setCallback(mMediaSessionCallback);
mediaSession.setFlags(MediaSessionCompat.
 FLAG_HANDLES_MEDIA_BUTTONS);
mediaSession.setActive(true);
PlaybackStateCompat state = new
 PlaybackStateCompat.Builder()
 .setActions(
 PlaybackStateCompat.ACTION_PLAY |
 PlaybackStateCompat.ACTION_PLAY_PAUSE |
 PlaybackStateCompat.ACTION_PAUSE |
 PlaybackStateCompat.ACTION_SKIP_TO_NEXT |
 PlaybackStateCompat.ACTION_SKIP_TO_PREVIOUS).build();
mediaSession.setPlaybackState(state);

3.	 Run the application on a device or emulator with media controls (such as headphones)
to see the Toast messages.

How it works...
There are four steps to setting this up:

1.	 Create a MediaSession.Callback and attach it to MediaSession

2.	 Set the MediaSession flags to indicate we want the media buttons

3.	 Set SessionState to active

4.	 Set PlayBackState with the actions we're going to handle

Steps 4 and 1 work together as the Callback will only get the events set in the
PlayBackState.

Since we're not actually controlling any playback in this recipe, we just demonstrate
how to respond to the hardware events. You'll want to implement actual functionality in
PlayBackState and include a call to setState() after the setActions() call.

This is a very nice example of how the changes to the API can make things easier. And since
new MediaSession and PlaybackState were rolled in to the Compatibility Library, we can
take advantage of these new APIs on older versions of the OS.

Chapter 11

281

There's more...

Checking the hardware being used
If you want your app to respond differently based on the current output hardware, you can use
AudioManager to check. Here's an example:

AudioManager audioManager =(AudioManager) this.
getSystemService(Context.AUDIO_SERVICE);
if (audioManager.isBluetoothA2dpOn()) {
 // Adjust output for Bluetooth.
} else if (audioManager.isSpeakerphoneOn()) {
 // Adjust output for Speakerphone.
} else if (audioManager.isWiredHeadsetOn()) {
 //Only checks if a wired headset is plugged in
 //May not be the audio output
} else {
 // Regular speakers?
}

See also
ff Developer Docs: MediaSession

https://developer.android.com/reference/android/media/session/
MediaSession.html

ff Developer Docs: MediaSessionCompat

https://developer.android.com/reference/android/support/v4/
media/session/MediaSessionCompat.html

ff Developer Docs: PlaybackState

https://developer.android.com/reference/android/support/v4/
media/session/PlaybackStateCompat.html

ff Developer Docs: PlaybackStateCompat

https://developer.android.com/reference/android/support/v4/
media/session/PlaybackStateCompat.html

Multimedia

282

Taking a photo with the default camera app
If your application needs an image from the camera, but is not a camera replacement app, it
may be better to allow the "default" camera app to take the picture. This also respects your
user's choice of a preferred camera application.

When you take a photo, unless it is specific to just your application, it's considered good
practice to make the photo publicly available. (This allows it to be included in the user's photo
gallery.) This recipe will demonstrate using the default photo application to click a picture,
save it to the public folder, and display the image.

Getting ready
Create a new project in Android Studio and call it: UsingTheDefaultCameraApp. Use the
default Phone & Tablet options and select Empty Activity when prompted for Activity Type.

How to do it...
We're going to create a layout with an ImageView and button. The button will create an Intent
to launch the default Camera app. When the camera app is done, our app will get a callback.
Start by opening the Android Manifest and follow these steps:

1.	 Add the following permission:
<uses-permission
android:name="android.permission.READ_EXTERNAL_STORAGE" />

2.	 Open the activity_main.xml file and replace the existing TextView with the
following views:
<ImageView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/imageView"
 android:src="@mipmap/ic_launcher"
 android:layout_centerInParent="true"/>

<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Take Picture"
 android:id="@+id/button"
 android:layout_alignParentBottom="true"
 android:layout_centerHorizontal="true"
 android:onClick="takePicture"/>

Chapter 11

283

3.	 Open MainActivity.java and add the following global variables to the
MainActivity class:
final int PHOTO_RESULT=1;
private Uri mLastPhotoURI=null;

4.	 Add the following method to create the URI for the photo:
private Uri createFileURI() {
 String timeStamp = new SimpleDateFormat("yyyyMMdd_HHmmss").
 format(System.currentTimeMillis());
 String fileName = "PHOTO_" + timeStamp + ".jpg";
 return Uri.fromFile(new File(Environment.
 getExternalStoragePublicDirectory(
 Environment.DIRECTORY_PICTURES),fileName));
}

5.	 Add the following method to handle the button click:
public void takePicture(View view) {
 Intent takePictureIntent = new Intent(
 MediaStore.ACTION_IMAGE_ CAPTURE);
 if (takePictureIntent.resolveActivity(getPackageManager()) !=
 null) {
 mLastPhotoURI = createFileURI();
 takePictureIntent.putExtra(MediaStore.EXTRA_OUTPUT,
 mLastPhotoURI);
 startActivityForResult(takePictureIntent, PHOTO_RESULT);
 }
}

6.	 Add a new method to override onActivityResult(), as follows:
@Override
protected void onActivityResult(int requestCode, int resultCode,
Intent data) {
 if (requestCode == PHOTO_RESULT && resultCode == RESULT_OK) {
 mImageView.setImageBitmap(BitmapFactory.
 decodeFile(mLastPhotoURI.getPath()));
 }
}

7.	 You're ready to run the application on a device or emulator.

Multimedia

284

How it works...
There are two parts to working with the default camera app. The first is to set up the intent
to launch the app. We create the Intent using MediaStore.ACTION_IMAGE_CAPTURE to
indicate we want a photo app. We verify a default app exists by checking the results from
resolveActivity(). As long as it's not null, we know an application is available to handle
the intent. (Otherwise, our app will crash.) We create a filename and add it to the intent with:
putExtra(MediaStore.EXTRA_OUTPUT, mLastPhotoURI).

When we get the callback in onActivityResult(), we first make sure it's the
PHOTO_RESULT and RESULT_OK (the user could have cancelled), then we load the
photo in ImageView.

There's more...
If you don't care where the picture is stored, you can call the intent without using
the MediaStore.EXTRA_OUTPUT extra. If you don't specify the output file, the
onActivityResult() will include a thumbnail of the image in data Intent. Here
is how you can display the thumbnail:

if (data != null) {
 imageView
.setImageBitmap((Bitmap) data.getExtras().get("data"));
}

Here's the code to load the full resolution image, using the URI returned in data Intent:

if (data != null) {
 try {
 imageView.setImageBitmap(
 MediaStore.Images.Media. getBitmap(getContentResolver(),
 Uri.parse(data.toUri(Intent.URI_ALLOW_UNSAFE))));
 } catch (IOException e) {
 e.printStackTrace();
 }
}

Calling the default video app
It's the same process if you want to call the default video capture application. Just change the
intent in Step 5, as follows:

Intent takeVideoIntent = new
 Intent(MediaStore.ACTION_VIDEO_CAPTURE);

Chapter 11

285

You can get the URI to the video in the onActivityResult(), as follows:

Uri videoUri = intent.getData();

See also
ff The Scaling down large images to avoid Out of Memory exceptions recipe in Chapter 9,

Graphics and Animation.

Taking a picture using the (old) Camera API
The previous recipe demonstrated how to use an intent to call the default photo application.
If you only need a quick photo, the intent is probably the ideal solution. If not, and you need
more control of the camera, this recipe will show you how to use the camera directly with the
Camera API.

There are actually two recipes for using the Camera API—one for the original Camera API
released in Android 1.0 (API 1) and Camera2 API, released in Android 5.0 (API 21). We'll cover
both the new and the old APIs. Ideally, you will want to write your application to the latest and
greatest APIs available, but at the time of this writing, Android 5.0 (API 21) only has about a
23 percent market share. If you only use the Camera2 API, you exclude over 75 percent of
the market.

Write your app to use Camera2 API to take advantage of the new features available, but
still have a functional application using the original Camera API for the rest of your users.
To help facilitate using both, this recipe is going to take advantage of newer features in
Android, specifically the TextureView, introduced in Android 4.0 (API 14). We'll use the
TextureView, in place of the more traditional SurfaceView, for displaying the camera
preview. This will allow you to use the same layout with the newer Camera2 API as it uses the
TextureView as well. (Setting the minimum API to Android 4.0 (API 14) and above, which
has over 96 percent market share, isn't limiting your user base much.)

Getting ready
Create a new project in Android Studio and call it CameraAPI. \On the Target Android
Devices dialog, select the Phone & Tablet option and chose API 14 (or above) for the
Minimum SDK. Select Empty Activity when prompted for Activity Type.

Multimedia

286

How to do it...
Start by opening the Android Manifest and following these steps:

1.	 Add the following two permissions:
<uses-permission android:name="android.permission.CAMERA"/>
<uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

2.	 Now open activity_main.xml and replace the existing TextView with the
following views:
<TextureView
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:id="@+id/textureView"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true" />

<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Take Picture"
 android:id="@+id/button"
 android:layout_alignParentBottom="true"
 android:layout_centerHorizontal="true"
 android:onClick="takePicture"/>

3.	 Open MainActivity.java and modify the MainActivity class declaration to
implement the SurfaceTextureListener, as follows:
public class MainActivity extends AppCompatActivity
 implements TextureView.SurfaceTextureListener {

4.	 Add the following global declarations to MainActivity:
@Deprecated
private Camera mCamera;
private TextureView mTextureView;

5.	 Create the following PictureCallback to handle saving the photo:
Camera.PictureCallback pictureCallback = new
 Camera.PictureCallback() {
 @Override
 public void onPictureTaken(byte[] data, Camera camera) {
 try {

Chapter 11

287

 String timeStamp = new SimpleDateFormat(
 "yyyyMMdd_HHmmss").format(
 System.currentTimeMillis());
 String fileName = "PHOTO_" + timeStamp +
 ".jpg";
 File pictureFile = new File(Environment.
 getExternalStoragePublicDirectory(
 Environment.DIRECTORY_PICTURES),fileName);

 FileOutputStream fileOutputStream =new
 FileOutputStream(pictureFile.getPath());
 fileOutputStream.write(data);
 fileOutputStream.close();
 Toast.makeText(MainActivity.this, "Picture
 Taken", Toast.LENGTH_SHORT).show();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
};

6.	 Add the following code to the existing onCreate() callback:
mTextureView = (TextureView)findViewById(R.id.textureView);
mTextureView.setSurfaceTextureListener(this);

7.	 Add the following methods to implement the SurfaceTextureListener interface:
public void onSurfaceTextureAvailable(SurfaceTexture surface, int
width, int height) {
 mCamera = Camera.open();
 if (mCamera!=null) {
 try {
 mCamera.setPreviewTexture(surface);
 mCamera.startPreview();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}
public boolean onSurfaceTextureDestroyed(SurfaceTexture
 surface) {
 if (mCamera!=null) {
 mCamera.stopPreview();
 mCamera.release();
 }
 return true;
}

Multimedia

288

public void onSurfaceTextureSizeChanged(SurfaceTexture
 surface, int width, int height) {
 // Unused
}
public void onSurfaceTextureUpdated(SurfaceTexture surface)
{
 // Unused
}

8.	 Add the following method to handle the button click:
public void takePicture(View view) {
 if (mCamera!=null) {
 mCamera.takePicture(null, null, pictureCallback);
 }
}

9.	 Run the application on a device or emulator with a camera.

How it works...
The first thing to note is, when you're looking at this code in Android Studio, you're going to see
a lot of strikethrough code with the following warning:

'android.hardware.Camera' is deprecated

As mentioned in the introduction, the android.hardware.camera2 API was introduced in
Android 5.0 (API 19) and replaces the android.hardware.camera APIs.

You can add the following annotation to suppress the Deprecation warning:
@SuppressWarnings("deprecation")

There are two main steps when using the Camera API:

ff Set up the preview

ff Capture the image

We get the TextureView from our layout, then assign our activity (which implements
SurfaceTextureListener) as the listener using this code:

mTextureView.setSurfaceTextureListener(this);

When the TextureView surface is ready, we get the onSurfaceTextureAvailable
callback, where we set the preview surface with the following code:

mCamera.setPreviewTexture(surface);
mCamera.startPreview();

Chapter 11

289

The next step is to take the picture when the button is pressed. We do that with this code:

mCamera.takePicture(null, null, pictureCallback);

When the picture is ready, we get the onPictureTaken() callback in the Camera.
PictureCallback class we created.

There's more...
Keep in mind, this code is meant to show you how it works, not to create a full commercial
application. As most developers know, the real challenge in coding is to handle all the
problem cases. Some areas to improve include adding the ability to switch cameras, as the
app currently uses the default camera. Also, take a look at the device orientation for both the
preview and when saving a picture. A more sophisticated app would handle some of the work
on a background thread to avoid delays on the UI thread. (Take a look at the next recipe to see
how we do some of the camera processing on a background thread.)

Setting the camera parameters
The Camera API includes parameters, which allow us to adjust the camera settings. With this
example, we can change the size of the preview:

Camera.Parameters parameters = mCamera.getParameters();
parameters.setPreviewSize(mPreviewSize.width,
mPreviewSize.height);
mCamera.setParameters(parameters);

Keep in mind, the hardware must also support the setting we want. In this example, we'd
want to query the hardware first to get all available preview modes, then set the one that
matches our requirements. (See an example of this in the next recipe when we set the
picture resolution.) See getParameters() in the Camera documentation link.

See also
ff The next recipe: Taking a picture using the Camera2 (the new) API

ff The Reading device orientation recipe in Chapter 8, Using the Touchscreen and
Sensors for examples on detecting the current device orientation

ff Developer Docs: Building a Camera App at: https://developer.android.com/
guide/topics/media/camera.html#custom-camera

ff Developer Docs: Camera API at: https://developer.android.com/
reference/android/hardware/Camera.html

https://developer.android.com/reference/android/hardware/Camera.html
https://developer.android.com/reference/android/hardware/Camera.html

Multimedia

290

Taking a picture using the Camera2
(the new) API

Now that we've looked at the old Camera API, it's time to learn about the new Camera2
API. Unfortunately, it's a bit more complicated due to the asynchronous nature of the APIs.
Fortunately, the overall concept is the same as the previous Camera API.

Getting ready
Create a new project in Android Studio and call it Camera2API. On the Target Android
Devices dialog, select the Phone & Tablet option and chose API 21 (or higher) for the
Minimum SDK. Select Empty Activity when prompted for Activity Type.

How to do it...
As you'll see, there's a lot of code for this recipe. Start by opening the Android Manifest and
following these steps:

1.	 Add the following two permissions:
<uses-permission android:name="android.permission.CAMERA" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_
STORAGE" />

2.	 Now open activity_main.xml and replace the existing TextView with the
following views:
<TextureView
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:id="@+id/textureView"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true" />

<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Take Picture"
 android:id="@+id/button"
 android:layout_alignParentBottom="true"
 android:layout_centerHorizontal="true"
 android:onClick="takePicture"/>

Chapter 11

291

3.	 Now open the MainActivity.java file and add the following global variables to
the MainActivity class:
private CameraDevice mCameraDevice = null;
private CaptureRequest.Builder mCaptureRequestBuilder = null;
private CameraCaptureSession mCameraCaptureSession = null;
private TextureView mTextureView = null;
private Size mPreviewSize = null;

4.	 Add the following Comparator class:
static class CompareSizesByArea implements Comparator<Size> {
 @Override
 public int compare(Size lhs, Size rhs) {
 return Long.signum((long) lhs.getWidth() * lhs.getHeight()
- (long) rhs.getWidth() * rhs.getHeight());
 }
}

5.	 Add the following CameraDevice.StateCallback:
private CameraDevice.StateCallback mStateCallback = new
CameraDevice.StateCallback() {
 @Override
 public void onOpened(CameraDevice camera) {
 mCameraDevice = camera;
 SurfaceTexture texture = mTextureView.getSurfaceTexture();
 if (texture == null) {
 return;
 }
 texture.setDefaultBufferSize(
 mPreviewSize.getWidth(), mPreviewSize.getHeight());
 Surface surface = new Surface(texture);
 try {
 mCaptureRequestBuilder = mCameraDevice.
 createCaptureRequest(CameraDevice.
 TEMPLATE_PREVIEW);
 } catch (CameraAccessException e){
 e.printStackTrace();
 }
 mCaptureRequestBuilder.addTarget(surface);
 try {
 mCameraDevice.createCaptureSession(Arrays.
 asList(surface), mPreviewStateCallback, null);
 } catch (CameraAccessException e) {
 e.printStackTrace();
 }
 }
 @Override

Multimedia

292

 public void onError(CameraDevice camera, int error) {}
 @Override
 public void onDisconnected(CameraDevice camera) {}
};

6.	 Add the following SurfaceTextureListener:
private TextureView.SurfaceTextureListener mSurfaceTextureListener =
 new TextureView.SurfaceTextureListener() {
 @Override
 public void onSurfaceTextureUpdated(SurfaceTexture surface) {}
 @Override
 public void onSurfaceTextureSizeChanged(
 SurfaceTexture surface, int width, int height) {}
 @Override
 public boolean onSurfaceTextureDestroyed(
 SurfaceTexture surface) {
 return false;
 }
 @Override
 public void onSurfaceTextureAvailable(
 SurfaceTexture surface, int width, int height) {
 openCamera();
 }
};

7.	 Add the following CameraCaptureSession.StateCallback:
private CameraCaptureSession.StateCallback mPreviewStateCallback =
new CameraCaptureSession.StateCallback() {
 @Override
 public void onConfigured(CameraCaptureSession session) {
 startPreview(session);
 }

 @Override
 public void onConfigureFailed(CameraCaptureSession session) {}
};

8.	 Add the following code to the existing onCreate() callback:
mTextureView = (TextureView) findViewById(R.id.textureView);
mTextureView.setSurfaceTextureListener(mSurfaceTextureListener);

9.	 Add the following methods to override onPause() and onResume():
@Override
protected void onPause() {
 super.onPause();

Chapter 11

293

 if (mCameraDevice != null) {
 mCameraDevice.close();
 mCameraDevice = null;
 }
}
@Override
public void onResume() {
 super.onResume();
 if (mTextureView.isAvailable()) {
 openCamera();
 } else {
 mTextureView.setSurfaceTextureListener(
 mSurfaceTextureListener);
 }
}

10.	 Add the openCamera()method:
private void openCamera() {
 CameraManager manager = (CameraManager) getSystemService(
 CAMERA_SERVICE);
 try{
 String cameraId = manager.getCameraIdList()[0];
 CameraCharacteristics characteristics =
 manager.getCameraCharacteristics(cameraId);
 StreamConfigurationMap map = characteristics.get(
 CameraCharacteristics.SCALER_STREAM_CONFIGURATION_MAP);
 mPreviewSize = map.getOutputSizes(SurfaceTexture.class) [0];
 manager.openCamera(cameraId, mStateCallback, null);
 } catch(CameraAccessException e) {
 e.printStackTrace();
 } catch (SecurityException e) {
 e.printStackTrace();
 }
}

11.	 Add the startPreview() method:
private void startPreview(CameraCaptureSession session) {
 mCameraCaptureSession = session;
 mCaptureRequestBuilder.set(
 CaptureRequest.CONTROL_MODE,
 CameraMetadata.CONTROL_MODE_AUTO);
 HandlerThread backgroundThread = new HandlerThread(
 "CameraPreview");
 backgroundThread.start();

Multimedia

294

 Handler backgroundHandler = new Handler(
 backgroundThread. getLooper());
 try {
 mCameraCaptureSession.setRepeatingRequest(
 mCaptureRequestBuilder.build(), null,
 backgroundHandler);
 } catch (CameraAccessException e) {
 e.printStackTrace();
 }
}

12.	 Add the getPictureFile() method:
private File getPictureFile() {
 String timeStamp = new SimpleDateFormat(
 "yyyyMMdd_HHmmss"). format(System.currentTimeMillis());
 String fileName = "PHOTO_" + timeStamp + ".jpg";
 return new File(Environment.getExternalStoragePublicDirectory(
 Environment.DIRECTORY_PICTURES),fileName);
}

13.	 Add the takePicture() method that saves the image file:
protected void takePicture(View view) {
 if (null == mCameraDevice) {
 return;
 }
 CameraManager manager = (CameraManager)
 getSystemService(Context.CAMERA_SERVICE);
 try {
 CameraCharacteristics characteristics =
 manager.getCameraCharacteristics(
 mCameraDevice.getId());
 StreamConfigurationMap configurationMap =
 characteristics.get(CameraCharacteristics.
 SCALER_STREAM_CONFIGURATION_MAP);
 if (configurationMap == null) return;
 Size largest = Collections.max(
 Arrays.asList(configurationMap.getOutputSizes(
 ImageFormat.JPEG)),
 new CompareSizesByArea());
 ImageReader reader = ImageReader.newInstance(
 largest.getWidth(), largest.getHeight(),
 ImageFormat.JPEG, 1);
 List < Surface > outputSurfaces =
 new ArrayList < Surface > (2);
 outputSurfaces.add(reader.getSurface());

Chapter 11

295

 outputSurfaces.add(new Surface(
 mTextureView.getSurfaceTexture()));
 final CaptureRequest.Builder captureBuilder =
 mCameraDevice.createCaptureRequest(CameraDevice.
 TEMPLATE_STILL_ CAPTURE);
 captureBuilder.addTarget(reader.getSurface());
 captureBuilder.set(CaptureRequest.CONTROL_MODE,
 CameraMetadata.CONTROL_MODE_AUTO);
 ImageReader.OnImageAvailableListener readerListener =
 new ImageReader.OnImageAvailableListener() {
 @Override
 public void onImageAvailable(ImageReader reader) {
 Image image = null;
 try {
 image = reader.acquireLatestImage();
 ByteBuffer buffer = image.getPlanes()[0].
 getBuffer();
 byte[] bytes = new byte[buffer.capacity()];
 buffer.get(bytes);
 OutputStream output = new FileOutputStream(
 get PictureFile());
 output.write(bytes);
 output.close();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 } finally {
 if (image != null) {
 image.close();
 }
 }
 }
 };
 HandlerThread thread = new HandlerThread("CameraPicture");
 thread.start();
 final Handler backgroudHandler = new Handler(
 thread.getLooper());
 reader.setOnImageAvailableListener(readerListener,
 backgroudHandler);
 final CameraCaptureSession.CaptureCallback captureCallback
 = new CameraCaptureSession.CaptureCallback() {
 @Override
 public void onCaptureCompleted(

Multimedia

296

 CameraCaptureSession session, CaptureRequest request,
 TotalCaptureResult result) {
 super.onCaptureCompleted(session, request,
 result);
 Toast.makeText(MainActivity.this, "Picture
 Saved", Toast.LENGTH_SHORT).show();
 startPreview(session);
 }
 };
 mCameraDevice.createCaptureSession(outputSurfaces, new
 CameraCaptureSession.StateCallback() {
 @Override
 public vod onConfigured(CameraCaptureSession session) {
 try {
 session.capture(captureBuilder.build(),
 captureCallback, backgroudHandler);
 } catch (CameraAccessException e) {
 e.printStackTrace();
 }
 }
 @Override
 public void onConfigureFailed(CameraCaptureSession
 session) { }
 }, backgroudHandler);
 } catch (CameraAccessException e) {
 e.printStackTrace();
 }
}

14.	 Run the application on a device or emulator with a camera.

How it works...
Since we learned about the TextureView in the previous recipe, we can jump to the new
Camera2 API information.

Though there are more classes involved, just like the older Camera API, there are two
basic steps:

ff Setting up the preview

ff Capturing the image

Chapter 11

297

Setting up the preview
Here's a rundown on how the code sets up the preview:

1.	 First, we set up the TextureView.SurfaceTextureListener with the
setSurfaceTextureListener() method in onCreate().

2.	 When we get the onSurfaceTextureAvailable() callback, we open the camera.

3.	 We pass our CameraDevice.StateCallback class to the openCamera()
method, which eventually calls the onOpened() callback.

4.	 onOpened() gets the surface for the preview by calling getSurfaceTexture()
and passes it to the CameraDevice by calling createCaptureSession().

5.	 Finally, when CameraCaptureSession.StateCallback onConfigured() is
called, we start the preview with the setRepeatingRequest() method.

Capturing the image
Even though the takePicture() method may appear to be procedural, capturing an image
also involves several classes and relies on callbacks. Here's a breakdown on how the code
takes a picture:

1.	 The user clicks the Take Picture button.

2.	 Then queries the camera to find the largest available image size.

3.	 Then creates an ImageReader.

4.	 Next, he/she sets up OnImageAvailableListener, and saves the image in the
onImageAvailable() callback.

5.	 Then, creates CaptureRequest.Builder and includes the ImageReader surface.

6.	 Next, creates CameraCaptureSession.CaptureCallback, which defines
the onCaptureCompleted() callback. When the capture is complete, it restarts
the preview.

7.	 Then, calls the createCaptureSession() method, creating a
CameraCaptureSession.StateCallback. This is where the capture()
method is called, passing in the CameraCaptureSession.CaptureCallback
created earlier.

There's more...
As with the previous Camera example, we've just created the base code to demonstrate a
working Camera application. Again, there are areas for improvement. First, you should handle
the device orientation, for both the preview and when saving the images. (See the previous
recipe for the link.) Also, with Android 6.0 (API 23) now available, it would be a good time to
start using the new permission model. Instead of just checking for an exception as we do in
the openCamera() method, it would be better to check for the required permission.

Multimedia

298

See also
ff The previous recipe: Taking a picture using the (old) Camera API

ff The new Android 6.0 Run-Time permission model in Chapter 14, Getting Your App
Ready for the Play Store

ff Developer Docs: Camera2 API

ff https://developer.android.com/reference/android/hardware/
camera2/package-summary.html

https://developer.android.com/reference/android/hardware/camera2/package-summary.html
https://developer.android.com/reference/android/hardware/camera2/package-summary.html
https://developer.android.com/reference/android/hardware/camera2/package-summary.html
https://developer.android.com/reference/android/hardware/camera2/package-summary.html

299

12
Telephony, Networks,

and the Web

In this chapter, we will cover the following topics:

ff How to make a phone call

ff Monitoring phone call events

ff How to send SMS (text) messages

ff Receiving SMS messages

ff Displaying a web page in your application

ff Checking online status and connection type

ff Getting started with Volley for Internet requests

ff Canceling a Volley request

ff Using Volley to request a JSON response

ff Using Volley to request an image

ff Using Volley's NetworkImageView and ImageLoader

Introduction
We'll start this chapter by looking at Telephony functionality with How to make a phone call.
After exploring how to make a call, we'll look at how to monitor a phone call with Monitoring
phone call events. We'll then move on to SMS messaging with How to send SMS Messages,
and then we'll cover receiving SMS Messages with Receiving SMS Messages.

Telephony, Networks, and the Web

300

We'll then explore the WebView for adding browser functionality to your app. At its basic level,
the WebView is a basic HTML viewer. We'll show how you can extend a WebViewClient class
and modify the settings through WebSettings to create full browser functionality, including
JavaScript and Zoom features.

The remaining chapter will cover Volley, a new library made available through AOSP. The
Getting started with Volley for Internet requests introduction will give some background
information on the online libraries available on Android and talk about why Volley was created.
It also offers a complete walk-through of adding Volley to your Android Studio project.

How to make a phone call
As we've seen in previous recipes, we can call the default applications simply by using an
Intent. To make a phone call, use Intent.ACTION_DIAL when creating an Intent. You can
include a phone number with the setData() method. Here is sample code that will call up
the Dialer app with the phone number specified:

Intent intent = new Intent(Intent.ACTION_DIAL);
intent.setData(Uri.parse("tel:" + number));
startActivity(intent);

Since your application is not doing the dialing and the user must press the Dial button, you do
not need any dialing permissions in your app. The following recipe will show you how to place
a call directly, bypassing the Dial activity. (For this, you will need to add a permission.)

Getting ready
Create a new project in Android Studio and call it DialPhone. Use the default Phone &
Tablet option and select Empty Activity when prompted for Activity Type.

How to do it...
First, we need to add the appropriate permission to make the call. Then, we need to add a
button to call our Dial method. Start by opening the Android Manifest and follow these steps:

1.	 Add the following permission:
<uses-permission android:name=
 "android.permission.CALL_PHONE"></uses-permission>

2.	 Open activity_main.xml and replace the existing TextView with the
following button:
<Button
 android:id="@+id/button"
 android:layout_width="wrap_content"

Chapter 12

301

 android:layout_height="wrap_content"
 android:text="Dial"
 android:layout_centerInParent="true"
 android:onClick="dialPhone"/>

3.	 Add this method that will check whether your app has been granted the
CALL_PHONE permission:
private boolean checkPermission(String permission) {
 int permissionCheck =
 ContextCompat.checkSelfPermission(
 this, permission);
 return (permissionCheck ==
 PackageManager.PERMISSION_GRANTED);
}

4.	 Add the code to dial the number:
public void dialPhone(View view){
 if (checkPermission("android.permission.CALL_PHONE")) {
 Intent intent = new Intent(Intent.ACTION_CALL);
 intent.setData(Uri.parse("tel:0123456789"));
 startActivity(intent);
 }
}

5.	 Before running this on your device, be sure to replace 0123456789 with
a valid number.

How it works...
As we saw from the code in the introduction, we don't need any permissions when calling
the default Dialer application. But if we want to dial a number directly, we need to add the
CALL_PHONE permission. Starting with Android 6.0 Marshmallow (API 23), permissions
are no longer granted during installation, therefore, we check whether the application has
permission before attempting to dial.

See also
ff For more information, refer to the The new Runtime permission model recipe in

Chapter 14, Your App Ready for the Play Store.

Telephony, Networks, and the Web

302

Monitoring phone call events
In the previous recipe, we demonstrated how to make a phone call, both with an Intent to call
the default application as well as by directly dialing the number with no UI.

What if you want to be notified when the calls ends? This is where it gets a bit more complicated
as you'll need to monitor the Telephony events and track the phone state. In this recipe, we'll
demonstrate how to create a PhoneStateListener to read the phone state events.

Getting ready
Create a new project in Android Studio and call it PhoneStateListener. Use the default
Phone & Tablet option and select Empty Activity when prompted for Activity Type.

Although it's not required, you can use the previous recipe to initiate a phone call to view
the events. Otherwise, use the default dialer and/or watch the events from an incoming call.
(The example code provided in the download files includes the previous recipe to make it
easier to view the events.)

How to do it...
We only need a single TextView on the layout to display the event information. If you are
continuing from the previous recipe or starting a new recipe, open the activity_main.xml
file and follow these steps:

1.	 Add or modify the TextView as follows:
<TextView
 android:id="@+id/textView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

2.	 Add the following permission to the Android Manifest:
<uses-permission android:name=
 "android.permission.READ_PHONE_STATE">
</uses-permission>

3.	 Open MainActivity.java and add the following PhoneStateListener class to
the MainActivity class:
PhoneStateListener mPhoneStateListener = new
 PhoneStateListener() {
 @Override
 public void onCallStateChanged(int state,
 String number) {
 String phoneState = number;

Chapter 12

303

 switch (state) {
 case TelephonyManager.CALL_STATE_IDLE:
 phoneState += "CALL_STATE_IDLE\n";
 case TelephonyManager.CALL_STATE_RINGING:
 phoneState += "CALL_STATE_RINGING\n";
 case TelephonyManager.CALL_STATE_OFFHOOK:
 phoneState += "CALL_STATE_OFFHOOK\n";
 }
 TextView textView = (TextView)findViewById(
 R.id.textView);
 textView.append(phoneState);
 }
};

4.	 Modify onCreate() to set up the listener:
final TelephonyManager telephonyManager =
 (TelephonyManager)
 getSystemService(Context.TELEPHONY_SERVICE);
telephonyManager.listen(mPhoneStateListener,
 PhoneStateListener.LISTEN_CALL_STATE);

5.	 Run the application on a device and initiate and/or receive phone calls to view
the events.

How it works...
To demonstrate using the listener, we create the Telephony listener in the onCreate()
with these two lines of code:

final TelephonyManager telephonyManager = (TelephonyManager)
 getSystemService(Context.TELEPHONY_SERVICE);
telephonyManager.listen(mPhoneStateListener,
 PhoneStateListener.LISTEN_CALL_STATE);

When a PhoneState event occurs, it is sent to our PhoneStateListener class.

There's more...
In this recipe, we are monitoring the Call State events, as indicated with this constant:
LISTEN_CALL_STATE. The other interesting options include the following:

ff LISTEN_CALL_FORWARDING_INDICATOR

ff LISTEN_DATA_CONNECTION_STATE

ff LISTEN_SIGNAL_STRENGTHS

Telephony, Networks, and the Web

304

Take a look at the following PhoneStateListener link for a complete list.

When we're done listening for events, call the listen() method and pass LISTEN_NONE,
as shown here:

telephonyManager.listen(mPhoneStateListener,PhoneStateListener.LISTEN_
NONE);

See also
ff Developer Docs: PhoneStateListener at https://developer.android.com/

reference/android/telephony/PhoneStateListener.html

How to send SMS (text) messages
Since you're probably already familiar with SMS (or text) messages, we won't spend time
explaining what they are or why they are important. (If you're not familiar with SMS or want
more information, see the link provided in the See also section of this recipe.) This recipe will
demonstrate how to send an SMS Message. (The next recipe will demonstrate how to receive
notifications of new messages and how to read existing messages.)

Getting ready
Create a new project in Android Studio and call it SendSMS. Use the default Phone & Tablet
option and select Empty Activity when prompted for Activity Type.

How to do it...
First, we'll add the necessary permissions for sending an SMS. Then, we'll create a layout with
a Phone Number and Message fields and a Send button. When the Send button is clicked on,
we'll create and send the SMS. Here are the steps:

1.	 Open the Android Manifest and add the following permission:
<uses-permission android:name=
 "android.permission.SEND_SMS"/>

2.	 Open activity_main.xml and replace the existing TextView with the
following XML:
<EditText
 android:id="@+id/editTextNumber"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:inputType="number"
 android:ems="10"

Chapter 12

305

 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true"
 android:hint="Number"/>
<EditText
 android:id="@+id/editTextMsg"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_below="@+id/editTextNumber"
 android:layout_centerHorizontal="true"
 android:hint="Message"/>
<Button
 android:id="@+id/buttonSend"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Send"
 android:layout_below="@+id/editTextMsg"
 android:layout_centerHorizontal="true"
 android:onClick="send"/>

3.	 Open MainActivity.java and add the following global variables:
final int SEND_SMS_PERMISSION_REQUEST_CODE=1;
Button mButtonSend;

4.	 Add the following code to the existing onCreate() callback:
mButtonSend = (Button)findViewById(R.id.buttonSend);
mButtonSend.setEnabled(false);

if (checkCallPermission(Manifest.permission.SEND_SMS)) {
 mButtonSend.setEnabled(true);
} else {
 ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.SEND_SMS},
 SEND_SMS_PERMISSION_REQUEST_CODE);
}

5.	 Add the following method to check the permission:
private boolean checkPermission(String permission) {
 int permissionCheck =
 ContextCompat.checkSelfPermission(this,permission);
 return (permissionCheck ==
 PackageManager.PERMISSION_GRANTED);
}

Telephony, Networks, and the Web

306

6.	 Override onRequestPermissionsResult() to handle the permission
request response:
@Override
public void onRequestPermissionsResult(int requestCode,
 String permissions[], int[] grantResults) {
 switch (requestCode) {
 case SEND_SMS_PERMISSION_REQUEST_CODE: {
 if (grantResults.length > 0
 && grantResults[0] ==
 PackageManager.PERMISSION_GRANTED) {
 mButtonSend.setEnabled(true);
 }
 return;
 }
 }
}

7.	 And finally, add the method to actually send the SMS:
public void send(View view) {
 String phoneNumber = ((EditText)findViewById(
 R.id.editTextNumber)).getText().toString();
 String msg = ((EditText)findViewById(
 R.id.editTextMsg)).getText().toString();

 if (phoneNumber==null || phoneNumber.
 length()==0 || msg==null || msg.length()==0) {
 return;
 }

 if (checkPermission(Manifest.permission.SEND_SMS)) {
 SmsManager smsManager = SmsManager.getDefault();
 smsManager.sendTextMessage(phoneNumber, null, msg,
 null, null);
 } else {
 Toast.makeText(MainActivity.this, "No Permission",
 Toast.LENGTH_SHORT).show();
 }
}

8.	 You're ready to run the application on a device or emulator. (Use the emulator device
number, such as 5556, when sending to another emulator.)

Chapter 12

307

How it works...
The code for sending an SMS is only two lines, as shown here:

SmsManager smsManager = SmsManager.getDefault();
smsManager.sendTextMessage(phoneNumber, null, msg, null, null);

The sendTextMessage() method does the actual sending. Most of the code for this recipe
is to set up the permissions since the permission model was changed in Android 6.0
Marshmallow (API 23).

There's more...
As simple as it is to send SMS messages, we still have a few more options.

Multipart messages
Though it can vary depending on the carrier, 160 is typically the maximum characters allowed
per text message. You could modify the preceding code to check whether the message exceeds
160 characters and if so, you can call the SMSManager divideMessage() method. The
method returns an ArrayList, which you can send to sendMultipartTextMessage().
Here's an example:

ArrayList<String> messages=smsManager.divideMessage(msg);
smsManager.sendMultipartTextMessage(
 phoneNumber, null, messages, null, null);

Note that messages sent with sendMultipartTextMessage()
may not work correctly when using an emulator, so be sure to test on
a real device.

Delivery status notification
If you'd like to be notified of the status of the messages, there are two optional fields
you can use. Here's the sendTextMessage() method as defined in the SMSManager
documentation:

sendTextMessage(String destinationAddress, String scAddress,
 String text, PendingIntent sentIntent, PendingIntent
 deliveryIntent)

Telephony, Networks, and the Web

308

You can include a pending Intent to be notified of the send status and/or delivery status. Upon
receipt of your pending Intent, it will include a result code with either Activity.RESULT_OK,
if it sent successfully, or an error code as defined in the SMSManager documentation
(link mentioned in the following See also section):

ff RESULT_ERROR_GENERIC_FAILURE: Generic failure cause

ff RESULT_ERROR_NO_SERVICE: Failed because service is currently unavailable

ff RESULT_ERROR_NULL_PDU: Failed because no PDU was provided

ff RESULT_ERROR_RADIO_OFF: Failed because radio was explicitly turned off

See also
ff Short Message Service on Wikipedia at https://en.wikipedia.org/wiki/

Short_Message_Service

ff Developer Docs: SMSManager at https://developer.android.com/
reference/android/telephony/SmsManager.html

Receiving SMS messages
This recipe will demonstrate how to set up a Broadcast Receiver to notify you of new SMS
messages. It's useful to note that your app does not need to be running to receive the SMS
Intent. Android will start your service to process the SMS.

Getting ready
Create a new project in Android Studio and call it ReceiveSMS. Use the default Phone &
Tablet option and select Empty Activity when prompted for Activity Type.

How to do it...
We won't be using a layout in this demonstration as all the work will be in the Broadcast
Receiver. We'll use Toasts to display incoming SMS messages. Open the Android Manifest
and follow these steps:

1.	 Add the following permission:
<uses-permission android:name=
 "android.permission.RECEIVE_SMS" />

Chapter 12

309

2.	 Add the following declaration for the broadcast receiver to the <application>
element:
<receiver android:name=".SMSBroadcastReceiver">
 <intent-filter>
 <action android:name=
 "android.provider.Telephony.SMS_RECEIVED">
 </action>
 </intent-filter>
</receiver>

3.	 Open MainActivity.java and add the following method:
private boolean checkPermission(String permission) {
 int permissionCheck =
 ContextCompat.checkSelfPermission(
 this, permission);
 return (permissionCheck ==
 PackageManager.PERMISSION_GRANTED);
}

4.	 Modify the existing onCreate() callback to check the permission:
if (!checkPermission(Manifest.permission.RECEIVE_SMS)) {
 ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.RECEIVE_SMS}, 0);
}

5.	 Add a new Java class to the project called SMSBroadcastReceiver using the
following code:
public class SMSBroadcastReceiver extends BroadcastReceiver {
 final String SMS_RECEIVED =
 "android.provider.Telephony.SMS_RECEIVED";

 @Override
 public void onReceive(Context context, Intent intent) {
 if (SMS_RECEIVED.equals(intent.getAction())) {
 Bundle bundle = intent.getExtras();
 if (bundle != null) {
 Object[] pdus = (Object[]) bundle.get(
 "pdus");
 String format = bundle.getString("format");
 final SmsMessage[] messages = new
 SmsMessage[pdus.length];
 for (int i = 0; i < pdus.length; i++) {
 if (Build.VERSION.SDK_INT >=
 Build.VERSION_CODES.M) {

Telephony, Networks, and the Web

310

 messages[i] = SmsMessage.
 createFromPdu((byte[]) pdus[i],
 format);
 } else {
 messages[i] =
 SmsMessage.createFromPdu(
 (byte[]) pdus[i]);
 }
 Toast.makeText(context,
 messages[0].getMessageBody(),
 Toast.LENGTH_SHORT).show();
 }
 }
 }
 }
}

6.	 You're ready to run the application on a device or emulator.

How it works...
Just like in the previous recipe on sending SMS messages, we first need to check whether the
app has permission. (On pre-Android 6.0 devices, the manifest declaration will automatically
provide the permission, but for Marshmallow and later, we'll need to prompt the user as we
do here.)

As you can see, Broadcast receiver receives the notification of new SMS messages. We tell
the system we want to receive the new SMS Received Broadcasts using this code in the
Android Manifest:

<receiver android:name=".SMSBroadcastReceiver">
 <intent-filter>
 <action android:name=
 "android.provider.Telephony.SMS_RECEIVED"></action>
 </intent-filter>
</receiver>

The notification comes in through the standard onRecieve() callback so we check the
action using this code:

if (SMS_RECEIVED.equals(intent.getAction())) {}

Chapter 12

311

This is probably the most complicated line of code in this demonstration:

messages[i] = SmsMessage.createFromPdu((byte[]) pdus[i]);

Basically, it calls the SmsMessage library to create an SMSMessage object from the PDU.
(The PDU, short for Protocol Data Unit, is the binary data format for SMS messages.) If you're
not familiar with the PDU formation, you don't need to be. The SmsMessage library will take
care of it for you and return an SMSMessage object.

If your app is not receiving SMS broadcast messages, an existing application
may be blocking your app. You can try increasing the priority value in
intent-filter as shown here, or disabling/uninstalling the other app(s):

<intent-filter android:priority="100">
 <action android:name=
 "android.provider.Telephony.SMS_RECEIVED" />
</intent-filter>

There's more...
This recipe demonstrates displaying SMS messages as they are received, but what about
reading existing messages?

Reading existing SMS messages
First, to read the existing messages, you'll need the following permission:

<uses-permission android:name="android.permission.READ_SMS" />

Here's an example of getting a cursor using the SMS content provider:

Cursor cursor = getContentResolver().query(
 Uri.parse("content://sms/"), null, null, null, null);
while (cursor.moveToNext()) {
 textView.append("From :" + cursor.getString(1) + " : " +
 cursor.getString(11)+"\n");
}

Telephony, Networks, and the Web

312

At the time of writing, the SMS content provider has over 30 columns. Here are the first 12,
which are the most useful (remember, the column count starts at zero):

0. 	 _id

1.	 thread_id

2.	 address

3.	 person

4.	 date

5.	 protocol

6.	 read

7.	 status

8.	 type

9.	 reply_path_present

10.	subject
11.	body

Keep in mind, the content provider is not part of the public API and can change without
notification.

See also
ff Developer Docs: SmsManager at https://developer.android.com/

reference/android/telephony/SmsManager.html

ff PDU (Protocol Data Unit) at https://en.wikipedia.org/wiki/Protocol_
data_unit

ff Developer Docs: Telephony.Sms.Intents at https://developer.android.com/
reference/android/provider/Telephony.Sms.Intents.html

Displaying a web page in your application
When you want to display HTML content on a web page, you have two choices: call the default
browser or display them within your app. If you just want to call the default browser, use an
Intent as follows:

Uri uri = Uri.parse("https://www.packtpub.com/");
Intent intent = new Intent(Intent.ACTION_VIEW, uri);
startActivity(intent);

Chapter 12

313

If you need to display the content within your own application, you can use the WebView.
This recipe will show how to display a web page in your application, as can be seen in this
screenshot:

Getting ready
Create a new project in Android Studio and call it WebView. Use the default Phone & Tablet
option and select Empty Activity when prompted for Activity Type.

Telephony, Networks, and the Web

314

How to do it...
We're going to create the WebView through code so we won't be modifying the layout.
We'll start by opening the Android Manifest and following these steps:

1.	 Add the following permission:
<uses-permission android:name=
 "android.permission.INTERNET"/>

2.	 Modify the existing onCreate() to include the following code:
WebView webview = new WebView(this);
setContentView(webview);
webview.loadUrl("https://www.packtpub.com/");

3.	 You're ready to run the application on a device or emulator.

How it works...
We create a WebView to use as our layout and load our webpage with loadUrl(). The
preceding code works, but at this level, it is very basic and only displays the first page.
If you click on any links, the default browser will handle the request.

There's more...
What if you want full web browsing functionality so any link they click on still loads in your
WebView? Create a WebViewClient as shown in this code:

webview.setWebViewClient(new WebViewClient());

Controlling page navigation
If you want more control over the page navigation, such as only allowing links within
your own website, you can create your own WebViewClient class and override the
shouldOverrideUrlLoading() callback, as shown here:

private class mWebViewClient extends WebViewClient {
 @Override
 public boolean shouldOverrideUrlLoading(WebView view,
 String url) {
 if (Uri.parse(url).getHost().equals("www.packtpub.com")) {
 return false; //Don't override since it's the same
 //host
 } else {

Chapter 12

315

 return true; //Stop the navigation since it's a
 //different site
 }
 }
}

How to enable JavaScript
There are many other changes we can customize through WebSettings of WebView. If you want
to enable JavaScript, get WebSettings of WebView and call setJavaScriptEnabled(),
as shown:

WebSettings webSettings = webview.getSettings();
webSettings.setJavaScriptEnabled(true);

Enable built-in zoom
Another webSetting option is setBuiltInZoomControls(). Continuing from the
preceding code, just add:

webSettings.setBuiltInZoomControls(true);

Check the webSetting link in the next section for a large list of additional options.

See also
ff Developer Docs: WebView at https://developer.android.com/reference/

android/webkit/WebView.html

ff Developer Docs: WebSettings at https://developer.android.com/
reference/android/webkit/WebSettings.html

ff Developer Docs: android.webkit at https://developer.android.com/
reference/android/webkit/package-summary.html

Checking online status and connection type
This is a simple recipe, but one that is very common and will probably be included in every
Internet application you build: checking online status. While checking online status, we can
also check the connection type: WIFI or MOBILE.

Getting ready
Create a new project in Android Studio and call it isOnline. Use the default Phone & Tablet
option and select Empty Activity when prompted for Activity Type.

Telephony, Networks, and the Web

316

How to do it...
First, we need to add the necessary permissions to access the network. Then, we'll create a
simple layout with a Button and TextView. To get started, open the Android Manifest and
follow these steps:

1.	 Add the following permissions:
<uses-permission android:name=
 "android.permission.INTERNET"/>
<uses-permission android:name=
 "android.permission.ACCESS_NETWORK_STATE" />

2.	 Open the activity_main.xml file and replace the existing TextView with the
following views:
<TextView
 android:id="@+id/textView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="" />
<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Check"
 android:layout_centerInParent="true"
 android:onClick="checkStatus"/>

3.	 Add this method to report if connected:
private boolean isOnline() {
 ConnectivityManager connectivityManager =
 (ConnectivityManager)
 getSystemService(Context.CONNECTIVITY_SERVICE);
 NetworkInfo networkInfo =
 connectivityManager.getActiveNetworkInfo();
 return (networkInfo != null &&
 networkInfo.isConnected());
}

4.	 Add the following method to handle the button click:
public void checkStatus(View view) {
 TextView textView = (TextView)
 findViewById(R.id.textView);
 if (isOnline()) {
 ConnectivityManager connectivityManager = (
 ConnectivityManager)
 getSystemService(

Chapter 12

317

 Context.CONNECTIVITY_SERVICE);
 NetworkInfo networkInfo =
 connectivityManager.getActiveNetworkInfo();
 textView.setText(networkInfo.getTypeName());
 } else {
 textView.setText("Offline");
 }
}

5.	 You're ready to run the application on a device or emulator.

How it works...
We created the isOnline() method to make it easy to reuse this code.

To check the status, we get an instance of ConnectivityManager to read the
NetworkInfo state. If it reports we are connected, we get the name of the active
network by calling getType(), which returns one of the following constants:

ff TYPE_MOBILE

ff TYPE_WIFI

ff TYPE_WIMAX

ff TYPE_ETHERNET

ff TYPE_BLUETOOTH

Also, see the ConnectivityManager link later for additional constants. For display
purposes, we call getTypeName(). We could call getType() to get a numeric
constant instead.

There's more...
Let's look at some additional constants of ConnectivityManager.

Monitoring network state changes
If your application needs to respond to changes in the network status, take a look at the
CONNECTIVITY_ACTION in ConnectivityManager. You need to create a broadcast
receiver, and then register for the event. Here's an example of how to include the action
in the receiver's intent filter through the Android Manifest:

<receiver android:name="com.vcs.timetrac.VCSBroadcastReceiver">
 <intent-filter>
 <action android:name=
 "android.net.conn.CONNECTIVITY_CHANGE" />
 </intent-filter>
</receiver>

Telephony, Networks, and the Web

318

Be careful using the Android manifest as it will notify your app every time the network state
changes, even if your app isn't being used. This can cause unnecessary drain on the battery.
If your app only needs to respond to network changes while the user is actually using your
app, create the listeners in the code instead.

See also
ff Developer Docs: ConnectivityManager at https://developer.android.com/

reference/android/net/ConnectivityManager.html

ff Developer Docs: NetworkInfo at https://developer.android.com/
reference/android/net/NetworkInfo.html

Getting started with Volley for Internet
requests

Android includes multiple libraries for Internet queries, including the Apache HttpClient
and HttpURLConnection. The Apache HttpClient was the recommended library before
Android 2.3 Gingerbread (API 9). Android 2.3 Gingerbread (API 9) saw many improvements to
the HttpURLConnection library and it became the recommended library, and still remains so
today. With the release of Android 6.0, the Apache HttpClient has been removed completely
from the SDK, leaving the HttpURLConnection library as the recommended replacement.

Though the HttpURLConnection library still works and has its uses, there are drawbacks:
it's not the easiest library to use if you are new to writing web requests and it requires a lot of
repetitive overhead code. Fortunately, we have a new option from Ficus Kirkpatrick, a Google
Developer from the Google Play group. He released a library called Volley, which provides a
simplified wrapper. (It uses the HttpURLConnection library, by default, and can also be
used with other libraries.)

You can see his Google I/O presentation here:
https://www.youtube.com/watch?v=yhv8l9F44qo

Several reasons to use Volley over HttpURLConnection include the following:

ff Thread pool (defaults to four threads)

ff Transparent disk cache

ff Queue priority settings

Chapter 12

319

There are additional benefits, but these three alone make it worth learning about Volley. A
fourth benefit, which if you've ever used HttpURLConnection will become apparent, is the
lack of boilerplate code. Instead of having to write a bunch of standard try/catch code
around many of your calls, the library will handle the checks internally, allowing you to focus
more on the specific task at hand.

Volley has built-in support for the following request types:

ff String

ff JSON

ff Image

ff Custom

While Volley excels at multiple small request calls (such as when scrolling through a
ListView), it is not good at large file downloads as the returned objects are parsed in
memory. For larger file downloads, take a look at the DownloadManager (see the link at the
end of the recipe). Also, for the same reason, it's not a solution for streaming content; for that,
refer to HttpURLConnection.

Since Volley is currently not in the Android SDK, we need to download the code and add it
to our project. This recipe will walk you through the steps of adding Volley to your application
project and making a simple request.

Getting ready
Before creating your new project, download the Volley project files hosted on the Android
Open Source Project (AOSP) website using the following Git command:

git clone https://android.googlesource.com/platform/frameworks/volley

If you are unfamiliar with Git, see the Git (software) link at the end of this recipe for
additional information and help finding a Git client for your platform. Git is a Version Control
Software (VCS) used on many platforms. (Once installed, you can also integrate Git VCS
in Android Studio.)

Create a new project in Android Studio and call it SetupVolley. Use the default Phone &
Tablet option and select Empty Activity when prompted for Activity Type.

Telephony, Networks, and the Web

320

How to do it...
Before starting these steps, make sure you've downloaded the Volley project as described
previously. We'll start the steps below by adding Volley to our project to make a simple Internet
call. We'll use a single button in our layout to initiate the request and a TextView to display
the results. Here are the steps:

1.	 Open the Android Manifest and add the following permission:
<uses-permission android:name=
 "android.permission.INTERNET"/>

2.	 Import the Volley module by going to File | New | Import Module (see the
following screenshot) and follow the wizard.

Chapter 12

321

3.	 On the second page of the New Module Import Wizard (see the following screenshot),
you need to specify the location of the Volley files and assign the Module name. This
is the name we'll need in the next step:

4.	 Under the Gradle Scripts section, open the build.gradle (Module: app)
file. See the following screenshot:

Telephony, Networks, and the Web

322

5.	 Add/verify the following statement in the dependencies section:
compile project(":Volley")

The value in parenthesis needs to match the Module name you
specified in the previous step.

6.	 Under Gradle Scripts, open the settings.gradle file and verify the contents
as follows:
include ':app', ':Volley'

7.	 Open the activity_main.xml file and replace the existing TextView with the
following TextView and Button elements:
<TextView
 android:id="@+id/textView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentTop="true"
 android:layout_alignParentLeft="true"
 android:layout_above="@+id/button" />
<Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Request"
 android:layout_alignParentBottom="true"
 android:layout_centerHorizontal="true"
 android:onClick="sendRequest"/>

8.	 Add the sendRequest() method called by the button click:
public void sendRequest(View view) {
 final TextView textView = (TextView)
 findViewById(R.id.textView);
 RequestQueue queue = Volley.newRequestQueue(this);
 String url ="https://www.packtpub.com/";
 StringRequest stringRequest = new StringRequest(
 Request.Method.GET, url,
 new Response.Listener<String>() {
 @Override
 public void onResponse(String response) {
 textView.setText(
 response.substring(0,500));
 }

Chapter 12

323

 }, new Response.ErrorListener() {
 @Override
 public void onErrorResponse(VolleyError error) {
 textView.setText("onErrorResponse(): "+
 error.getMessage());
 }
 });
 queue.add(stringRequest);
}

9.	 You're ready to run the application on a device or emulator.

How it works...
It's probably helpful to understand that in Volley, Internet transactions are called requests.
To execute a request, add it to the queue. To make this happen, we first create an instance
of a Volley RequestQueue, and then create a StringRequest and add it to the queue.
A StringRequest is just what it sounds like; we are requesting a string response.

For this recipe, we just call the Packt Publishing website and get the page as a string
response. Since this is just for illustration, we only display the first 500 characters.

There's more...
Now that you have Volley properly set up and making Internet requests, this recipe will be the
building block for the Volley recipes that follow.

See also
ff Volley: Git at Google at https://android.googlesource.com/platform/

frameworks/volley

ff Git (software): Wikipedia, the free encyclopedia at https://en.wikipedia.org/
wiki/Git_(software)

ff Developer Docs: DownloadManager at http://developer.android.com/
reference/android/app/DownloadManager.html

ff Developer Docs: HttpURLConnection at https://developer.android.com/
reference/java/net/HttpURLConnection.html

Telephony, Networks, and the Web

324

Canceling a Volley request
In the previous recipe, we demonstrated how to add a request to the Volley queue. What
happens if you no longer need the response? This could happen if the user is scrolling through
a ListView and you're updating the ListItems by fetching information from the Web. It
would be wasteful of bandwidth, power, and CPU cycles to allow the requests to complete
knowing you are just going to discard the response.

If you were using the HTTPURLConnection library, you would need to track all requests and
cancel them manually. This recipe will show you how easy it is to cancel the request in Volley.

Getting ready
If you have not already completed the previous recipe, Getting started with Volley for Internet
requests, you will need to follow steps 1-5 to add the Volley module to your application.

Create a new project in Android Studio and call it CancelVolleyRequest. Use the default
Phone & Tablet option and select Empty Activity when prompted for Activity Type.

How to do it...
If you have not already added the Volley module to your application, review the previous
section. With Volley added to your project, follow these steps:

1.	 Open activity_main.xml and replace the existing TextView with the
following XML:
<TextView
 android:id="@+id/textView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentTop="true"
 android:layout_alignParentLeft="true"
 android:layout_above="@+id/button" />
<Button
 android:id="@+id/button"
 android:layout_width="100dp"
 android:layout_height="wrap_content"
 android:text="Request"
 android:layout_centerInParent="true"
 android:onClick="sendRequest"/>
<Button
 android:id="@+id/buttonClose"
 android:layout_width="100dp"

Chapter 12

325

 android:layout_height="wrap_content"
 android:layout_below="@+id/button"
 android:layout_centerHorizontal="true"
 android:text="Close"
 android:onClick="close"/>

2.	 Open MainActivity.java and add the following global variable:
RequestQueue mRequestQueue;

3.	 Edit the existing onCreate() to initialize the RequestQueue:
mRequestQueue = Volley.newRequestQueue(this);

4.	 Add the following sendRequest() method (note that this is similar to the
sendRequest() method from the previous recipe with several changes):
public void sendRequest(View view) {
 final TextView textView = (TextView)
 findViewById(R.id.textView);

 String url ="https://www.packtpub.com/";
 StringRequest stringRequest = new StringRequest(
 Request.Method.GET, url,
 new Response.Listener<String>() {
 @Override
 public void onResponse(String response) {
 textView.setText(
 response.substring(0,500));
 }
 }, new Response.ErrorListener() {
 @Override
 public void onErrorResponse(VolleyError error) {
 textView.setText("onErrorResponse(): "+
 error.getMessage());
 }
 });
 stringRequest.setTag(this);
 mRequestQueue.add(stringRequest);
 finish();
}

5.	 Add the Close button's onClick method:
public void close(View view){
 finish();
}

Telephony, Networks, and the Web

326

6.	 Create the following override for the onStop() callback:
@Override
protected void onStop() {
 super.onStop();
 mRequestQueue.cancelAll(this);
}

7.	 You're ready to run the application on a device or emulator.

How it works...
To cancel the requests, we can call the RequestQueue cancelAll() method and pass in
our tag. In this example, we used the activity, this, as our tag, but we could use any object
as our tag. This allows you to create whatever grouping you might need for your requests.

There's more...
We're not just demonstrating how easy it is to cancel requests, we're also demonstrating a
defensive programming tactic. By ensuring all our requests are canceled, we won't have to
add code to check for a null activity in our responses, since Volley guarantees that we will
not receive any responses from a request after it has been canceled.

Using Volley to request a JSON response
Since JavaScript Object Notation (JSON) is probably the most common data-interchange
format, you'll likely find yourself needing to call a JSON web service. (If you are unfamiliar
with JSON, review the link at the end of this recipe.) This recipe will demonstrate how to
make a JSON Request using Volley.

Getting ready
Create a new project in Android Studio and call it JSONRequest. Use the default Phone &
Tablet option and select Empty Activity when prompted for Activity Type.

This recipe will be using the Volley setup as described in Getting started with Volley for
Internet requests. Follow steps 1-5 to add Volley to your new project.

Chapter 12

327

How to do it...
With Volley added to your project as described previously, follow these steps:

1.	 Open activity_main.xml and replace the existing TextView with the
following XML:
<TextView
 android:id="@+id/textView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentTop="true"
 android:layout_alignParentLeft="true"
 android:layout_above="@+id/button" />
<Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Request"
 android:layout_alignParentBottom="true"
 android:layout_centerHorizontal="true"
 android:onClick="sendRequest"/>

2.	 Add the following sendRequest() method:
public void sendRequest(View view) {
 final TextView textView = (TextView)
 findViewById(R.id.textView);
 RequestQueue queue = Volley.newRequestQueue(this);
 String url ="<json service>";
 //"http://ip.jsontest.com/"

 JsonObjectRequest jsonObjectRequest = new
 JsonObjectRequest(Request.Method.GET, url, null,
 new Response.Listener<JSONObject>() {
 @Override
 public void onResponse(JSONObject response) {
 textView.setText(response.toString());
 }
 }, new Response.ErrorListener() {
 @Override
 public void onErrorResponse(VolleyError error) {
 textView.setText("onErrorResponse(): "+
 error.getMessage());

Telephony, Networks, and the Web

328

 }
 });
 queue.add(jsonObjectRequest);
}

3.	 Replace the url string in the code before you run this application.

How it works...
Requesting a JSON response using JsonObjectRequest() basically works the same as the
StringRequest(). The difference is the response, which is returned as a JSONObject.

To run this code, you will need to replace the url parameter with your web service URL. If
you don't have a web service to test against, you can try a link from the JSON Test website
(http://www.jsontest.com/).

There's more...
In the preceding example, we requested a JSONObject with JsonObjectRequest. We can
also request a JSONARray with JsonArrayRequest.

See also
ff Visit the JSON web page at http://json.org/

ff Developer Docs: org.json (JSON Libraries) at http://developer.android.com/
reference/org/json/package-summary.html

Using Volley to request an image
Once you make your JSON Requests as demonstrated in the previous recipe, the next most
likely call you'll be making is to get an image. This recipe will demonstrate how to request an
image to update an ImageView.

Getting ready
Create a new project in Android Studio and call it ImageRequest. Use the default Phone &
Tablet option and select Empty Activity when prompted for Activity Type.

This recipe will be using the setup described in the Getting started with Volley for Internet
requests recipe. Follow steps 1-5 to add Volley to your new project.

Chapter 12

329

How to do it...
With Volley added to your project, as described previously, follow these steps:

1.	 Open activity_main.xml and replace the existing TextView with the
following XML:
<ImageView
 android:id="@+id/imageView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerInParent="true" />
<Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Request"
 android:layout_alignParentBottom="true"
 android:layout_centerHorizontal="true"
 android:onClick="sendRequest"/>

2.	 Add the following sendRequest() method:
public void sendRequest(View view) {
 final ImageView imageView =
 (ImageView)findViewById(R.id.imageView);
 RequestQueue queue = Volley.newRequestQueue(this);
 String url ="http://www.android.com/static/img/
 logos-2x/android-wordmark-8EC047.png";
 ImageRequest imageRequest = new ImageRequest(url,
 new Response.Listener<Bitmap>() {
 @Override
 public void onResponse(Bitmap bitmap) {
 imageView.setImageBitmap(bitmap);
 }
 }, 0, 0, ImageView.ScaleType.CENTER, null,
 new Response.ErrorListener() {
 @Override
 public void onErrorResponse(VolleyError error) {
 error.printStackTrace();
 }
 });
 queue.add(imageRequest);
}

3.	 Run the application on a device or emulator.

Telephony, Networks, and the Web

330

How it works...
This recipe, basically, works in the same way as the previous two Volley requests. In this
recipe, we pass a URL to an image and load the ImageView in the response.

We've now covered the three basic request types: String, JSON, and Image.

There's more...
Though the basic types will probably cover most of your needs, Volley is extensible and you
can also implement a custom response by extending Request<T>.

This recipe demonstrates a problem with our example code. If you change the orientation
of the device, you'll see the image flicker as the activity is recreated.

Creating a Volley singleton
It's recommended to instantiate Volley as a singleton. (An alternative approach would be
to create the queue in the application class.) To create a singleton class in Android Studio,
go to New | File | Singleton and give it a class name, such as VolleySingleton.

Move the code to create the request queue to the singleton class. If you create a method
as follows:

public <T> void addToRequestQueue(Request<T> req) {
 mRequestQueue.add(req);
}

Then, you can add to your queue from anywhere using the following code:

VolleySingleton.getInstance(this).addToRequestQueue(stringRequest);

The key to making this work properly is to always use the Application Context (not an
Activity or Broadcast Receiver Context) by calling getApplicationContext() on the
context passed in.

See also
ff Developer Docs: Application (class) at https://developer.android.com/

reference/android/app/Application.html

Chapter 12

331

Using Volley's NetworkImageView and
ImageLoader

Our last recipe on Volley will not be a request per se, but a replacement for the ImageView.
Requesting an image to populate an ImageView is such a common task; Volley combines the
functionality to a new view called NetworkImageView. This recipe will demonstrate how to
use a NetworkImageView.

Getting ready
Create a new project in Android Studio and call it NetworkImageView. Use the default
Phone & Tablet option and select Empty Activity when prompted for Activity Type.

This recipe will be using the setup described in the Getting started with Volley for Internet
requests recipe. Follow Steps 1-5 to add Volley to your new project.

How to do it...
With Volley added to your project as described previously, follow these steps:

1.	 Open activity_main.xml and replace the existing TextView with the
following XML:
<com.android.volley.toolbox.NetworkImageView
 android:id="@+id/networkImageView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerInParent="true" />

2.	 Add the following code to the existing onCreate() callback:
NetworkImageView networkImageView = (NetworkImageView)
 findViewById(R.id.networkImageView);
String url="http://www.android.com/static/img/
 logos-2x/android-wordmark-8EC047.png";
RequestQueue queue = Volley.newRequestQueue(this);
ImageLoader imageLoader = new ImageLoader(queue,
 new ImageLoader.ImageCache() {
 private final LruCache<String, Bitmap>
 cache = new LruCache<String, Bitmap>(20);

 @Override
 public Bitmap getBitmap(String url) {
 return cache.get(url);
 }

Telephony, Networks, and the Web

332

 @Override
 public void putBitmap(String url, Bitmap bitmap) {
 cache.put(url, bitmap);
 }
 });
networkImageView.setImageUrl(url,imageLoader);

3.	 You're ready to run the application on a device or emulator.

How it works...
This example is very different from the previous Volley examples. Instead of creating a
request object, we create an ImageLoader. The ImageLoader class allows us to override
the default caching behavior, such as the number of bitmaps or how the size is calculated.
(We could change the cache to be based on total memory instead of image count.) See the
LruCache link later for more information.

With the ImageLoader created, you can assign the image URL to the NetworkImageView
and pass the ImageLoader as the second parameter.

There's more...
As we mentioned in the previous recipe, the problem with our Volley example is that we
create the queue in the activity. This is most noticeable with images, but regardless, it's
recommended to create a Volley singleton. See the Create a Volley singleton section in the
previous recipe for more information.

If you create a singleton as described in the previous recipe, you can also move the
ImageLoader code to the singleton and expose the ImageLoader like this:

public ImageLoader getImageLoader() {
 return mImageLoader;
}

With the singleton created, this recipe could be coded as follows:
NetworkImageView networkImageView =
 (NetworkImageView)findViewById(R.id.networkImageView);
String url="http://www.android.com/static/img/logos-2x/
 android-wordmark-8EC047.png";
networkImageView.setImageUrl(url,
 VolleySingleton.getInstance(this).getImageLoader());

See also
ff Developer Docs: LruCache at https://developer.android.com/reference/

android/util/LruCache.html

333

13
Getting Location and

Using Geofencing

In this chapter, we will cover the following topics:

ff How to get the last location

ff Resolving problems reported with the GoogleApiClient OnConnectionFailedListener

ff How to receive location updates

ff Create and monitor a Geofence

Introduction
Location awareness offers many benefits to an app, so many in fact that even desktop apps
now attempt to get the user's location. Location uses ranges from turn-by-turn directions, "find
the nearest" applications, alerts based on location, and there are now even location-based
games that get you out exploring with your device.

The Google APIs offer many rich features for creating location-aware applications and
mapping features. Our first recipe How to get the last location will look at obtaining the last
known location as stored on the device. If your app is not location intensive, this may provide
an ideal way to get the user's location without a large resource overhead. If you need constant
updates, then turn to the How to receive location updates recipe. Though constant location
updates requires more resources, users are likely to understand when you're giving them
turn-by-turn directions. If you are requesting location updates for a proximity location, take a
look at using the Geofence option instead, in the Create and monitor a Geofence recipe.

All the recipes in this chapter use the Google Libraries. If you have not already downloaded
the SDK Packages, follow the instructions from Google.

Getting Location and Using Geofencing

334

Add SDK Packages from http://developer.android.com/sdk/
installing/adding-packages.html.

Now that you have the location, there's a good chance you'll want to map it as well. This is
another area where Google makes this very easy on Android using the Google Maps API. To
get started with Google Maps, take a look at the Google Maps Activity option when creating a
new project in Android Studio. Instead of selecting Blank Activity, as we normally do for these
recipes, choose Google Maps Activity, as shown in this screenshot:

Chapter 13

335

How to get the last location
We'll start this chapter with a simple recipe that is commonly needed: how to get the last
known location. This is an easy way to use APIs with very little overhead resource drain.
(This means, your app won't be responsible for killing the battery.)

This recipe also provides a good introduction to setting up the Google Location APIs.

Getting ready
Create a new project in Android Studio and call it: GetLastLocation. Use the default Phone
& Tablet options, and select Empty Activity when prompted for Activity Type.

How to do it...
First, we'll add the necessary permissions to the Android Manifest, then we'll create a layout
with a Button and a TextView element. Finally, we'll create a GoogleAPIClient API to
access the last location. Open the Android Manifest and follow these steps:

1.	 Add the following permission:
<uses-permission android:name=
"android.permission.ACCESS_COARSE_LOCATION"/>

2.	 Under the Gradle Scripts section, open the build.gradle (Module: app) file, as shown
in this screenshot:

3.	 Add the following statement to the dependencies section:
compile 'com.google.android.gms:play-services:8.4.0'

Getting Location and Using Geofencing

336

4.	 Open activity_main.xml and replace the existing TextView with the following
XML:
<TextView
 android:id="@+id/textView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
<Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Get Location"
 android:layout_centerInParent="true"
 android:onClick="getLocation"/>

5.	 Open MainActivity.java and add the following global variables:
GoogleApiClient mGoogleApiClient;
TextView mTextView;
Button mButton;

6.	 Add the class for ConnectionCallbacks:
GoogleApiClient.ConnectionCallbacks mConnectionCallbacks =
 new GoogleApiClient.ConnectionCallbacks() {
 @Override
 public void onConnected(Bundle bundle) {
 mButton.setEnabled(true);
 }
 @Override
 public void onConnectionSuspended(int i) {}
};

7.	 Add the class to handle the OnConnectionFailedListener callback:
GoogleApiClient.OnConnectionFailedListener
 mOnConnectionFailedListener = new
 GoogleApiClient.OnConnectionFailedListener() {
 @Override
 public void onConnectionFailed(ConnectionResult
 connectionResult) {
 Toast.makeText(MainActivity.this,
 connectionResult.toString(),
 Toast.LENGTH_LONG).show();
 }
};

Chapter 13

337

8.	 Add the following code to the existing onCreate() method:
mTextView = (TextView) findViewById(R.id.textView);
mButton = (Button) findViewById(R.id.button);
mButton.setEnabled(false);
setupGoogleApiClient();

9.	 Add the method to set up GoogleAPIClient:
protected synchronized void setupGoogleApiClient() {
 mGoogleApiClient = new GoogleApiClient.Builder(this)
 .addConnectionCallbacks(mConnectionCallbacks)
 .addOnConnectionFailedListener(
 mOnConnectionFailedListener)
 .addApi(LocationServices.API)
 .build();
 mGoogleApiClient.connect();
}

10.	 Add the following method for the button click:
public void getLocation(View view) {
 try {
 Location lastLocation =
 LocationServices.FusedLocationApi.
 getLastLocation(
 mGoogleApiClient);
 if (lastLocation != null) {
 mTextView.setText(
 DateFormat.getTimeInstance().format(
 lastLocation.getTime()) + "\n" +
 "Latitude="+lastLocation.getLatitude() +
 "\n" + "Longitude=" +
 lastLocation.getLongitude());
 } else {
 Toast.makeText(MainActivity.this, "null",
 Toast.LENGTH_LONG).show();
 }
 }
 catch (SecurityException e) {e.printStackTrace();}
}

11.	 You're ready to run the application on a device or emulator.

Getting Location and Using Geofencing

338

How it works...
Before we can call the getLastLocation() method, we need to set up
GoogleApiClient. We call the GoogleApiClient.Builder method in our
setupGoogleApiClient() method, then connect to the library. When the library is ready, it
calls our ConnectionCallbacks.onConnected() method. For demonstration purposes,
this is where we enable the button. (We'll use this callback in later recipes to start additional
features.)

We used a button to show we can call getLastLocation() on demand; it's not a one-time
call. The system is responsible for updating the location and may return the same last location
on repeated calls. (This can be seen in the timestamp—it's the location timestamp, not the
timestamp when the button is pressed.)

This approach of calling the location on demand can be useful in situations where you only
need the location when something happens in your app (such as geocoding an object). Since
the system is responsible for the location updates, your app will not be responsible for a
battery drain from location updates.

The accuracy of the location object we receive is based on our permission setting. We
used ACCESS_COARSE_LOCATION, but if we want higher accuracy, we can request
ACCESS_FINE_LOCATION instead, with the following permission:

<uses-permission android:name=
"android.permission.ACCESS_FINE_LOCATION"/>

Lastly, to keep the code focused on GoogleApiClient, we just wrap the
getLastLocation() with SecurityException. In a production application, you should
check and request the permission as shown in the previous chapter. (See The new run-time
permission model.)

There's more...
If a problem occurs when connecting to the GoogleApiClient, the
OnConnectionFailedListener is called. In this example, we display a Toast. The next
recipe, Resolving problems reported with the GoogleApiClient OnConnectionFailedListener,
will show a more robust way to handle this situation.

Testing the location can be a challenge since it's difficult to actually move the device when
testing and debugging. Fortunately, we have the ability to simulate GPS data with the
emulator. (It is possible to create mock locations on a physical device as well, but it's
not as easy.)

Chapter 13

339

Mock locations
There are three ways to simulate locations with the emulator:

ff Android Studio

ff DDMS

ff The Geo command through Telnet

To set a mock location in Android Studio, follow these steps:

1.	 Navigate to Tools | Android | Android Device Monitor.

2.	 Select the Emulator Control tab in the device window.

3.	 Enter GPS coordinates under Location Controls.

Here's a screenshot showing the Location Controls:

Getting Location and Using Geofencing

340

Not that simulating the location works by sending GPS data. Therefore,
for your app to receive the mock location, it will need to be receiving GPS
data. Testing lastLocation() may not send the mock GPS data since
it doesn't rely solely on the GPS for determining the device location. Try the
mock location with the recipe How to receive Location Updates where we can
request the priority. (We can't force the system to use any specific location
sensor, we can only make a request. The system will choose the optimum
solution to deliver the results.)

See also
ff The The new Android 6.0 run-time permission model recipe in Chapter 14, Getting

Your App Ready for the Play Store

ff Setting up Google Play Services: https://developers.google.com/android/
guides/setup

ff The FusedLocationProviderApi interface: https://developers.google.
com/android/reference/com/google/android/gms/location/
FusedLocationProviderApi

Resolving problems reported with the
GoogleApiClient OnConnectionFailedListener

With the constantly changing nature of Google APIs, your users are likely to attempt to use your
application, but not be able to because their files are out of date. In the previous example, we
just show a Toast, but we can do better. We can use the GoogleApiAvailability library
to display a dialog to help the user resolve the problem.

We'll continue with the previous recipe and add code to the onConnectionFailed()
callback. We'll use the error result to display additional information to the user to resolve
their problem.

Getting ready
This recipe will continue from the previous recipe, How to get the last location. If you are
loading the project from the downloaded source files, it is called HandleGoogleAPIError.

Chapter 13

341

How to do it...
Since we are continuing from the previous recipe, we'll only cover the steps necessary to
update the previous code. Open ActivityMain.java and follow these steps:

1.	 Add the following lines to the global class variables:
private final int REQUEST_RESOLVE_GOOGLE_CLIENT_ERROR=1;
boolean mResolvingError;

2.	 Add the following method to show the Google API error dialog:
private void showGoogleAPIErrorDialog(int errorCode) {
 GoogleApiAvailability googleApiAvailability =
 GoogleApiAvailability.getInstance();
 Dialog errorDialog = googleApiAvailability.getErrorDialog(
 this, errorCode, REQUEST_RESOLVE_GOOGLE_CLIENT_ERROR);
 errorDialog.show();
}

3.	 Add the following code to override onActivityResult():
@Override
protected void onActivityResult(int requestCode, int
 resultCode, Intent data) {
 if (requestCode == REQUEST_RESOLVE_GOOGLE_CLIENT_ERROR) {
 mResolvingError = false;
 if (resultCode == RESULT_OK &&
 !mGoogleApiClient.isConnecting() &&
 !mGoogleApiClient.isConnected()) {
 mGoogleApiClient.connect();
 }
 }
}

4.	 In onConnectionFailed(), replace the existing line of code calling Toast, using
the following code:
if (mResolvingError) {
 return;
} else if (connectionResult.hasResolution()) {
 mResolvingError = true;
 try {
 connectionResult.startResolutionForResult(
 MainActivity.this, REQUEST_RESOLVE_GOOGLE_CLIENT_ERROR);
 } catch (IntentSender.SendIntentException e) {
 mGoogleApiClient.connect();
 }

Getting Location and Using Geofencing

342

} else {
 showGoogleAPIErrorDialog(
 connectionResult.getErrorCode());
}

5.	 You're ready to run the application on a device or emulator.

How it works...
Instead of displaying the error message with a Toast as we did before, we now
check connectionResult to see what we can do. The GoogleAPIClient uses
the connectionResult to indicate possible courses of action. We can call the
hasResolution() method, as follows:

connectionResult.hasResolution()

If the response is true, then it's something the user can resolve, such as enabling the location
service. If the response is false, we get an instance of the GoogleApiAvailability and
call the getErrorDialog() method. When finished, our onActivityResult() callback is
called, where we reset mResolvingError and, if successful, attempt to reconnect.

If you do not have a device with an older Google API for testing, you can
try testing on an emulator with an older Google API version.

There's more...
If your application is using fragments, you can get a dialog fragment instead, using this code:

ErrorDialogFragment errorFragment = new ErrorDialogFragment();
Bundle args = new Bundle();
args.putInt("dialog_error", errorCode);
errorFragment.setArguments(args);
errorFragment.show(getSupportFragmentManager(), "errordialog");

See also
ff Accessing Google APIs: https://developers.google.com/android/guides/

api-client

Chapter 13

343

How to receive location updates
If your application needs frequent location updates, your application can request periodic
updates. This recipe will demonstrate this using the requestLocationUpdates() method
from GoogleApiClient.

Getting ready
Create a new project in Android Studio and call it: LocationUpdates. Use the default Phone
& Tablet options and select Empty Activity when prompted for Activity Type.

How to do it...
Since we are receiving updates from the system, we won't need a button for this recipe. Our
layout will consist of just the TextView to see the location data. Open the Android Manifest
and follow these steps:

1.	 Add the following permission:
<uses-permission android:name="android.permission.ACCESS_FINE_
LOCATION"/>

2.	 Open the file build.gradle (Module: app) and add the following statement
to the dependencies section:
compile 'com.google.android.gms:play-services:8.4.0'

3.	 Open activity_main.xml and replace the existing TextView with the
following XML:
<TextView
 android:id="@+id/textView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

4.	 Open MainActivity.java and add the following global variables:
GoogleApiClient mGoogleApiClient;
LocationRequest mLocationRequest;
TextView mTextView;

5.	 Create the following LocationListener class:
LocationListener mLocationListener = new LocationListener() {
 @Override
 public void onLocationChanged(Location location) {
 if (location != null) {
 mTextView.setText(

Getting Location and Using Geofencing

344

 DateFormat.getTimeInstance().format(
 location.getTime()) + "\n" +
 "Latitude="+location.getLatitude()+"\n" +
 "Longitude="+location.getLongitude());
 }
 }
};

6.	 Create a ConnectionCallbacks class to receive the location updates:
GoogleApiClient.ConnectionCallbacks mConnectionCallbacks =
 new GoogleApiClient.ConnectionCallbacks() {
 @Override
 public void onConnected(Bundle bundle) {
 Log.i("onConnected()", "start");
 try {
 LocationServices.FusedLocationApi.
 requestLocationUpdates(
 mGoogleApiClient, mLocationRequest,
 mLocationListener);
 } catch (SecurityException e) {
 Log.i("onConnected()","SecurityException:
 "+e.getMessage());
 }
 }
 @Override
 public void onConnectionSuspended(int i) {}
};

7.	 Create an OnConnectionFailedListener class:
GoogleApiClient.OnConnectionFailedListener
mOnConnectionFailedListener = new GoogleApiClient.
OnConnectionFailedListener() {
 @Override
 public void onConnectionFailed(
 ConnectionResult connectionResult) {
 Toast.makeText(MainActivity.this,
 connectionResult.toString(),
 Toast.LENGTH_LONG).show();
 Log.i("onConnected()", "SecurityException: "
 +connectionResult.toString());
 }
};

8.	 Add the following code to the existing onCreate() callback:
mTextView = (TextView) findViewById(R.id.textView);
setupLocationRequest();

Chapter 13

345

9.	 Create the setupLocationRequest() method:
protected synchronized void setupLocationRequest() {
 mLocationRequest = new LocationRequest();
 mLocationRequest.setInterval(10000);
 mLocationRequest.setFastestInterval(10000);
 mLocationRequest.setPriority(
 LocationRequest.PRIORITY_HIGH_ACCURACY);
 mGoogleApiClient = new GoogleApiClient.Builder(this)
 .addConnectionCallbacks(mConnectionCallbacks)
 .addOnConnectionFailedListener(
 mOnConnectionFailedListener)
 .addApi(LocationServices.API)
 .build();
 mGoogleApiClient.connect();
}

10.	 You're ready to run the application on a device or emulator.

How it works...
This recipe is similar to the How to get the last location recipe, as we need to set up the
GoogleApiClient as we did before. But, instead of calling the lastLocation() method
on demand, we call the requestLocationUpdates() method to receive periodic location
updates through the LocationListener class.

The requestLocationUpdates() method requires three parameters:

ff GoogleApiClient

ff LocationRequest

ff LocationListener

We create the GoogleApiClient as we did before. This is the code to create our
LocationRequest:

mLocationRequest = new LocationRequest();
mLocationRequest.setInterval(10000);
mLocationRequest.setFastestInterval(10000);
mLocationRequest.setPriority(LocationRequest.
 PRIORITY_HIGH_ACCURACY)

When calling setInterval(), it's generally best to use the slowest delay that works for
your purposes, as it requires less device resources. The same idea applies when calling
setPriority(). The third parameter, the LocationListener, is where we define the
callback method onLocationChanged(). Here we just display the location data along
with the location timestamp.

Getting Location and Using Geofencing

346

There's more...
Unlike the previous Android APIs, the GoogleApiClient API does not allow the selection
of specific sensors for the location updates. As mentioned in the Mock Locations section of
How to get the last Location, using LocationRequest.PRIORITY_HIGH_ACCURACY along
with the ACCESS_FINE_LOCATION permission should use the GPS sensor. Refer to the Mock
Locations section for instructions on simulating your location.

Stop receiving location updates
When your application no longer needs location updates, call the
removeLocationUpdates() method, as shown here:

LocationServices.FusedLocationApi.removeLocationUpdates(
 mGoogleApiClient, mLocationListener);

Generally, you would want to disable updates when your application is no longer in the
foreground, but this depends on your specific application requirements. If your application
needs constant updates, it may be more desirable to create a background service to handle
the callbacks.

See also
ff Developer Docs: onLocationChanged at https://developer.android.com/

reference/com/google/android/gms/location/LocationRequest.html

Create and monitor a Geofence
If your application needs to know when the user enters a certain location, there's an
alternative to having to continuously check the user location: Geofencing. A Geofence is a
location (latitude and longitude) along with a radius. You can create a Geofence and let the
system notify you when the user enters the location proximity you specified. (Android currently
allows up to 100 Geofences per user.)

Geofence properties include:

ff Location: The longitude and latitude

ff Radius: The size of the circle (in meters)

ff Loitering delay : How long the user may remain within the radius before sending
notifications

ff Expiration: How long until the Geofence automatically expires

Chapter 13

347

ff Transition type: These are listed as follows:
�� GEOFENCE_TRANSITION_ENTER

�� GEOFENCE_TRANSITION_EXIT

�� INITIAL_TRIGGER_DWELL

This recipe will show you how to create a Geofence object and use it to create an instance of
GeofencingRequest.

Getting ready
Create a new project in Android Studio and call it: Geofence. Use the default Phone & Tablet
options and select Empty Activity when prompted for Activity Type.

How to do it...
We won't need a layout for this recipe as we'll use Toasts and Notifications for the user
interaction. We will need to create an additional Java class for IntentService, which
handles the Geofence alerts. Open the Android Manifest and follow these steps:

1.	 Add the following permission:
<uses-permission android:name=
"android.permission.ACCESS_FINE_LOCATION"/>

2.	 Open the file build.gradle (Module: app) and add the following statement to
the dependencies section:
compile 'com.google.android.gms:play-services:8.4.0'

3.	 Create a new Java class called GeofenceIntentService and extend the
IntentService class. The declaration will look as follows:
public class GeofenceIntentService extends IntentService {

4.	 Add the following constructor:
public GeofenceIntentService() {
 super("GeofenceIntentService");
}

5.	 Add onHandleIntent() to receive the Geofence alert:
protected void onHandleIntent(Intent intent) {
 GeofencingEvent geofencingEvent =
 GeofencingEvent.fromIntent(intent);
 if (geofencingEvent.hasError()) {

Getting Location and Using Geofencing

348

 Toast.makeText(getApplicationContext(), "Geofence
 error code= " + geofencingEvent.getErrorCode(),
 Toast.LENGTH_SHORT).show();
 return;
 }
 int geofenceTransition =
 geofencingEvent.getGeofenceTransition();
 if (geofenceTransition ==
 Geofence.GEOFENCE_TRANSITION_DWELL) {
 sendNotification();
 }
}

6.	 Add the sendNotification() method to display the message to the user:
private void sendNotification() {
 Log.i("GeofenceIntentService", "sendNotification()");
 Uri notificationSoundUri =
 RingtoneManager.getDefaultUri(
 RingtoneManager.TYPE_NOTIFICATION);
 NotificationCompat.Builder notificationBuilder = new
 NotificationCompat.Builder(this)
 .setSmallIcon(R.mipmap.ic_launcher)
 .setContentTitle("Geofence Alert")
 .setContentText("GEOFENCE_TRANSITION_DWELL")
 .setSound(notificationSoundUri)
 .setLights(Color.BLUE, 500, 500);
 NotificationManager notificationManager =
 (NotificationManager)
 getApplicationContext().getSystemService(
 Context.NOTIFICATION_SERVICE);
 notificationManager.notify(0,
 notificationBuilder.build());
}

7.	 Open the Android manifest and add the following within the <application>
element, at the same level as the <activity> element:
<service android:name=".GeofenceIntentService"/>

8.	 Open MainActivity.java and add the following global variables:
private final int MINIMUM_RECOMENDED_RADIUS=100;
GoogleApiClient mGoogleApiClient;
PendingIntent mGeofencePendingIntent;

Chapter 13

349

9.	 Create the following ResultCallback class:
ResultCallback mResultCallback = new ResultCallback() {
 @Override
 public void onResult(Result result) {
 Log.i("onResult()", "result: " +
 result.getStatus().toString());
 }
};

10.	 Create a ConnectionCallbacks class:
GoogleApiClient.ConnectionCallbacks mConnectionCallbacks = new
GoogleApiClient.ConnectionCallbacks() {
 @Override
 public void onConnected(Bundle bundle) {
 try {
 LocationServices.GeofencingApi.addGeofences(
 mGoogleApiClient,
 createGeofencingRequest(),
 getGeofencePendingIntent()
).setResultCallback(mResultCallback);
 } catch (SecurityException e) {
 Log.i("onConnected()", "SecurityException: " +
 e.getMessage());
 }
 }
 @Override
 public void onConnectionSuspended(int i) {}
};

11.	 Create an OnConnectionFailedListener class:
GoogleApiClient.OnConnectionFailedListener
mOnConnectionFailedListener = new GoogleApiClient.
OnConnectionFailedListener() {
 @Override
 public void onConnectionFailed(ConnectionResult
 connectionResult) {
 Log.i("onConnectionFailed()", "connectionResult: "
 +connectionResult.toString());
 }
};

12.	 Add the following code to the existing onCreate() callback:
 setupGoogleApiClient();

Getting Location and Using Geofencing

350

13.	 Add the method to setup the GoogleAPIClient:
protected synchronized void setupGoogleApiClient() {
 mGoogleApiClient = new GoogleApiClient.Builder(this)
 .addConnectionCallbacks(mConnectionCallbacks)
 .addOnConnectionFailedListener(
 mOnConnectionFailedListener)
 .addApi(LocationServices.API)
 .build();
 mGoogleApiClient.connect();
}

14.	 Create the setupGoogleApiClient() method:
protected synchronized void setupGoogleApiClient() {
 mGoogleApiClient = new GoogleApiClient.Builder(this)
 .addConnectionCallbacks(mConnectionCallbacks)
 .addOnConnectionFailedListener(
 mOnConnectionFailedListener)
 .addApi(LocationServices.API)
 .build();
 mGoogleApiClient.connect();
}

15.	 Create a pending intent with the following method:
private PendingIntent getGeofencePendingIntent() {
 if (mGeofencePendingIntent != null) {
 return mGeofencePendingIntent;
 }
 Intent intent = new Intent(this,
 GeofenceIntentService.class);
 return PendingIntent.getService(this, 0, intent,
 PendingIntent.FLAG_UPDATE_CURRENT);
}

16.	 Create the geofence object and add it to a list for the request:
private List createGeofenceList() {
 List<Geofence> geofenceList = new ArrayList<Geofence>();
 geofenceList.add(new Geofence.Builder()
 .setRequestId("GeofenceLocation")
 .setCircularRegion(
 37.422006, //Latitude
 -122.084095, //Longitude
 MINIMUM_RECOMENDED_RADIUS)
 .setLoiteringDelay(30000)
 .setExpirationDuration(Geofence.NEVER_EXPIRE)
 .setTransitionTypes(
 Geofence.GEOFENCE_TRANSITION_DWELL)

Chapter 13

351

 .build());
 return geofenceList;
}

17.	 Create the createGeofencingRequest() method as follows:
private GeofencingRequest createGeofencingRequest() {
 GeofencingRequest.Builder builder = new
 GeofencingRequest.Builder();
 builder.setInitialTrigger(
 GeofencingRequest.INITIAL_TRIGGER_DWELL);
 builder.addGeofences(createGeofenceList());
 return builder.build();
}

18.	 You're ready to run the application on a device or emulator.

How it works...
First, we add the ACCESS_FINE_LOCATION permission as this is required for Geofencing.
We set up the GoogleApiClient as we've done in previous recipes and wait until
onConnected() is called to set up the GeofencingApi.

Before we can call the GeofencingApi.addGeofences() method, we have to prepare
three objects:

ff GoogleApiClient

ff Geofence Request

ff Pending Intent

We already created the GoogleApiClient, which we saved in the mGoogleApiClient.

To create the Geofence Request, we use the GeofencingRequest.Builder. The builder
requires the list of Geofence objects, which are created in the createGeofenceList()
method. (Even though we are only creating a single Geofence object, the builder requires a
list, so we just add our single Geofence to an ArrayList.) Here is where we set the Geofence
properties:

.setRequestId("GeofenceLocation")

.setCircularRegion(
 37.422006, //Latitude
 -122.084095, //Longitude
 MINIMUM_RECOMENDED_RADIUS)
.setLoiteringDelay(30000)
.setExpirationDuration(Geofence.NEVER_EXPIRE)
.setTransitionTypes(Geofence.GEOFENCE_TRANSITION_DWELL)

Getting Location and Using Geofencing

352

Only the Loitering delay is optional, but we need it since we are using the DWELL transition.
When calling setTransitionTypes(), we can combine multiple transition types using the
OR operator, shown with the pipe. Here's an example using ENTER and EXIT instead:

.setTransitionTypes(Geofence.GEOFENCE_TRANSITION_ENTER |
 Geofence.GEOFENCE_TRANSITION_EXIT)

For this example, we used the same default latitude and longitude as the emulator. Change
these values as needed.

Our call to Geofence.Builder() creates the Geofence object. With the Geofence list
ready, we call the GeofencingRequest.Builder and set our initial trigger to INITIAL_
TRIGGER_DWELL. (If you change the preceding transition types, you may want to change the
initial trigger as well.)

The last object we need is a Pending Intent, which is how the system will notify our app when
the Geofence criteria are met. We created the GeofenceIntentService to handle the
Geofence intent by sending a notification to the user. (For more information on notifications,
refer to the Lights, Action, and Sound Redux using Notifications recipe in Chapter 7, Alerts
and Notifications.)

With all three objects created, we just call LocationServices.GeofencingApi.
addGeofences() and wait for the notification to arrive.

There's more...
To stop receiving Geofence notifications, you can call the removeGeofences() method with
either the RequestID parameter or PendingIntent. The following example uses the same
PendingIntent method we used for the notification:

LocationServices.GeofencingApi.removeGeofences(
 mGoogleApiClient,
 getGeofencePendingIntent()
).setResultCallback(mResultCallback);

See also
ff The Geofence.Builder class at: https://developers.google.com/

android/reference/com/google/android/gms/location/Geofence.
Builder.html

ff The GeofencingRequest.Builder class at: https://developers.
google.com/android/reference/com/google/android/gms/location/
GeofencingRequest.Builder

353

14
Getting your app ready

for the Play Store

In this chapter, we will cover the following topics:

ff The new Android 6.0 Run-Time permission model

ff How to schedule an alarm

ff Receive notification of device boot

ff Using AsyncTask for background work

ff Adding speech recognition to your app

ff Push Notification using Google Cloud Messaging

ff How to add Google sign-in to your app

Introduction
As we approach the end of this book, it's time to add the finishing touches to your application
before releasing it to the Play Store. The recipes in this chapter cover the topics that can make
a difference between users keeping your app or removing it.

Our first recipe, The new Android 6.0 Run-Time permission model, is certainly an important
topic, possibly being the primary reason Android went from version 5.x to version 6! Changes
to the Android permission model have been requested for some time, so this new model is a
welcome change, at least for users.

Next, we'll take a look at using alarms in Android. One of the primary benefits of alarms is that
the OS is responsible for maintaining the alarm, even when your application is not running.
Since alarms do not persist after rebooting the device, we'll also look at how to detect a device
reboot so you can recreate your alarms in Receive notification of device boot.

Getting your app ready for the Play Store

354

Almost any serious Android application will need a way to perform potentially blocking tasks
off the main thread. Otherwise, your app runs the risk of being perceived as sluggish, or
worse, completely nonresponsive. AsyncTask was designed to make it easier to create
a background worker task as we'll demonstrate in the Using the AsyncTask for background
work recipe.

If you want your app to benefit from hands-free typing or voice recognition, take a look at the
Adding Speech Recognition to your app recipe in which we'll explore the Google Speech API.

Possibly one of the most interesting features for communicating with your users is Push
Notification or Google Cloud Messaging (GCM) as Google calls it. The Push Notification using
Google Cloud Messaging recipe will walk you through the adding of GCM to your application
as well as explain the bigger picture.

Finally, we'll end the chapter with a recipe showing how to make your app more comfortable and
encourage users to log in with the How to add Google Sign-In to your app recipe

The new Android 6.0 Run-Time permission
model

The old security model was a sore point for many in Android. It's common to see reviews
commenting on the permissions an app requires. Sometimes, permissions were out of the line
(like a Flashlight app requiring internet permission), but other times, the developer had good
reasons to request certain permissions. The main problem was that it was an all-or-nothing
prospect.

This finally changed with the Android 6 Marshmallow (API 23) release. The new permission
model still declares permissions in the manifest as before, but users have the option of
selectively accepting or denying each permission. Users can even revoke a previously
granted permission.

Although this is a welcome change for many; however, for a developer, it has the potential to
break the code that was working before. We've talked about this permission change in the
previous recipes, as it has far reaching implications. This recipe will put it all together to serve
as a single point of reference when implementing this change in your own apps.

One important point to remember is that this change only affects users of Android 6.0
(API 23) and above.

Chapter 14

355

Getting ready
Create a new project in Android Studio and call it RuntimePermission. Use the default
Phone & Tablet option and select Empty Activity when prompted for Activity Type.

The sample source code sets the minimum API to 23, but this is not required. If your
compileSdkVersion is API 23 or above, the compiler will flag your code for the new
security model.

How to do it...
We need to start by adding our required permission to the manifest, then we'll add a button
to call our check permission code. Open the Android Manifest and follow these steps:

1.	 Add the following permission:
<uses-permission android:name=
 "android.permission.SEND_SMS"/>

2.	 Open activity_main.xml and replace the existing TextView with this button:
<Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Do Something"
 android:layout_centerInParent="true"
 android:onClick="doSomething"/>

3.	 Open MainActivity.java and add the following constant to the class:
private final int REQUEST_PERMISSION_SEND_SMS=1;

4.	 Add this method for permission check:
private boolean checkPermission(String permission) {
 int permissionCheck =
 ContextCompat.checkSelfPermission(
 this, permission);
 return (permissionCheck ==
 PackageManager.PERMISSION_GRANTED);
}

5.	 Add this method to show the explanation dialog:
private void showExplanation(String title,
 String message, final String permission,
 final int permissionRequestCode) {
 AlertDialog.Builder builder = new
 AlertDialog.Builder(this);

Getting your app ready for the Play Store

356

 builder.setTitle(title)
 .setMessage(message)
 .setPositiveButton(android.R.string.ok,
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int id) {
 requestPermission(permission,
 permissionRequestCode);
 }
 });
 builder.create().show();
}

6.	 Add this method to request the permission:
private void requestPermission(String permissionName,
 int permissionRequestCode) {
 ActivityCompat.requestPermissions(this,
 new String[]{permissionName},
 permissionRequestCode);
}

7.	 Add the method for button click:
public void doSomething(View view) {
 if (!checkPermission(Manifest.permission.SEND_SMS)) {
 if (ActivityCompat.
 shouldShowRequestPermissionRationale(this,
 Manifest.permission.SEND_SMS)) {
 showExplanation("Permission Needed",
 "Rationale", Manifest.permission.SEND_SMS,
 REQUEST_PERMISSION_SEND_SMS);
 } else {
 requestPermission(Manifest.permission.SEND_SMS,
 REQUEST_PERMISSION_SEND_SMS);
 }
 } else {
 Toast.makeText(MainActivity.this, "Permission
 (already) Granted!",
 Toast.LENGTH_SHORT).show();
 }
}

8.	 Override onRequestPermissionsResult() as follows:
@Override
public void onRequestPermissionsResult(
 int requestCode,
 String permissions[],
 int[] grantResults) {

Chapter 14

357

 switch (requestCode) {
 case REQUEST_PERMISSION_SEND_SMS: {
 if (grantResults.length > 0 &&
 grantResults[0] ==
 PackageManager.PERMISSION_GRANTED) {
 Toast.makeText(MainActivity.this,
 "Permission Granted!",
 Toast.LENGTH_SHORT).show();
 } else {
 Toast.makeText(MainActivity.this,
 "Permission Denied!",
 Toast.LENGTH_SHORT).show();
 }
 return;
 }
 }
}

9.	 Now, you're ready to run the application on a device or emulator.

How it works...
Using the new runtime permission model involves the following:

1.	 Check to see whether you have the desired permissions.

2.	 If not, check whether we should display the rationale (meaning, the request was
previously denied).

3.	 Request the permission; only the OS can display the permission request.

4.	 Handle the request response.

Here are the corresponding methods:

ff ContextCompat.checkSelfPermission

ff ActivityCompat.requestPermissions

ff ActivityCompat.shouldShowRequestPermissionRationale

ff onRequestPermissionsResult

Even though you are requesting permissions at runtime, the desired
permission must be listed in the Android Manifest. If the permission is
not specified, the OS will automatically deny the request.

Getting your app ready for the Play Store

358

There's more...
You can grant/revoke permissions through the ADB with the following:

adb shell pm [grant|revoke] <package> <permission-name>

Here's an example to grant the SEND_SMS permission for our test app:

adb shell pm grant com.packtpub.androidcookbook.runtimepermissions
android.permission.SEND_SMS

See also
ff Developer Docs: System Permissions at https://developer.android.com/

guide/topics/security/permissions.html

How to schedule an alarm
Android provides AlarmManager to create and schedule alarms. Alarms offer the following
features:

ff Schedule alarms for a set time or interval

ff Maintained by the OS, not your application, so alarms are triggered even if your
application is not running, or the device is asleep

ff Can be used to trigger periodic tasks (such as an hourly news update), even if your
application is not running

ff Your app does not use resources (such as timers or background services), since the
OS manages the scheduling

Alarms are not the best solution if you need a simple delay while your application is running,
for example, a short delay for a UI event. For short delays, it's easier and more efficient to use
a Handler, as we've done in several previous recipes.

When using alarms, keep these best practices in mind:

ff Use as infrequent alarm timing as possible

ff Avoid waking up the device

ff Use as imprecise timing as possible—the more precise the timing, the more
resources required

ff Avoid setting alarm times based on clock time (such as 12:00); add random
adjustments if possible to avoid congestion on servers (especially important
when checking for new content, such as weather or news)

Chapter 14

359

Alarms have three properties, as follows:

ff Alarm type (see in the following list)

ff Trigger time (if the time has already passed, the alarm is triggered immediately)

ff Pending Intent

A repeating alarm has the same three properties, plus an Interval:

ff Alarm type (see in the following list)

ff Trigger time (if the time has already passed, it triggers immediately)

ff Interval

ff Pending Intent

There are four alarm types:

ff RTC (Real Time Clock): This is based on the wall clock time. This does not wake
the device.

ff RTC_WAKEUP: This is based on the wall clock time. This wakes the device if it
is sleeping.

ff ELAPSED_REALTIME: This is based on the time elapsed since the device boot.
This does not wake the device.

ff ELAPSED_REALTIME_WAKEUP: This is based on the time elapsed since the
device boot. This wakes the device if it is sleeping.

Elapsed Real Time is better for time interval alarms—such as every 30 minutes.

Alarms do not persist after device reboots. All alarms are cancelled
when a device shuts down, so it is your app's responsibility to reset
the alarms on device boot. (See Receive notification of device boot for
more information.)

The following recipe will demonstrate how to create alarms with AlarmManager.

Getting ready
Create a new project in Android Studio and call it: Alarms. Use the default Phone & Tablet
option and select Empty Activity when prompted for Activity Type.

Getting your app ready for the Play Store

360

How to do it...
Setting an alarm requires a Pending Intent, which Android sends when the alarm is triggered.
Therefore, we need to set up a Broadcast Receiving to capture the alarm intent. Our UI will
consist of just a simple button to set the alarm. To start, open the Android Manifest and follow
these steps:

1.	 Add the following <receiver> to the <application> element at the same level
as the existing <activity> element:
<receiver android:name=".AlarmBroadcastReceiver">
 <intent-filter>
 <action android:name="com.packtpub.androidcookbook.
 alarms.ACTION_ALARM" />
 </intent-filter>
</receiver>

2.	 Open activity_main.xml and replace the existing TextView with the
following button:
<Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Set Alarm"
 android:layout_centerInParent="true"
 android:onClick="setAlarm"/>

3.	 Create a new Java class called AlarmBroadcastReceiver using the
following code:
public class AlarmBroadcastReceiver extends
 BroadcastReceiver {

 public static final String ACTION_ALARM=
 "com.packtpub.androidcookbook.alarms.ACTION_ALARM";

 @Override
 public void onReceive(Context context, Intent intent) {
 if (ACTION_ALARM.equals(intent.getAction())) {
 Toast.makeText(context, ACTION_ALARM,
 Toast.LENGTH_SHORT).show();
 }
 }
}

Chapter 14

361

4.	 Open ActivityMain.java and add the method for the button click:
public void setAlarm(View view) {
 Intent intentToFire = new Intent(
 getApplicationContext(),
 AlarmBroadcastReceiver.class);
 intentToFire.setAction(
 AlarmBroadcastReceiver.ACTION_ALARM);
 PendingIntent alarmIntent = PendingIntent.getBroadcast(
 getApplicationContext(), 0, intentToFire, 0);
 AlarmManager alarmManager =
 (AlarmManager)getApplicationContext().
 getSystemService(Context.ALARM_SERVICE);
 long thirtyMinutes=SystemClock.elapsedRealtime() + 30 *
 60 * 1000;
 alarmManager.set(AlarmManager.ELAPSED_REALTIME,
 thirtyMinutes, alarmIntent);
}

5.	 You're ready to run the application on a device or emulator.

How it works...
Creating the alarm is done with this line of code:

alarmManager.set(AlarmManager.ELAPSED_REALTIME, thirtyMinutes,
 alarmIntent);

Here's the method signature:

set(AlarmType, Time, PendingIntent);

Prior to Android 4.4 KitKat (API 19), this was the method to request an exact
time. Android 4.4 and later will consider this as an inexact time for efficiency,
but will not deliver the intent prior to the requested time. (See setExact()
as follows if you need an exact time.)

To set the alarm, we create a Pending Intent with our previously defined alarm action:

public static final String ACTION_ALARM=
 "com.packtpub.androidcookbook.alarms.ACTION_ALARM";

(This is an arbitrary string and could be anything we want, but it needs to be unique, so
we prepend our package name.) We check for this action in the Broadcast Receiver's
onReceive() callback.

Getting your app ready for the Play Store

362

There's more...
If you click the Set Alarm button and wait for thirty minutes, you will see the Toast when the
alarm triggers. If you are too impatient to wait and click the Set Alarm button again before
the first alarm is triggered, you wouldn't get two alarms. Instead, the OS will replace the first
alarm with the new alarm, since they both use the same Pending Intent. (If you need multiple
alarms, you need to create different Pending Intents, such as using different Actions.)

Cancel the alarm
If you want to cancel the alarm, call the cancel() method by passing the same Pending
Intent you have used to create the alarm. If we continue with our recipe, this is how it
would look:

alarmManager.cancel(alarmIntent);

Repeating alarm
If you want to create a repeating alarm, use the setRepeating() method. The Signature is
similar to the set() method, but with an interval. This is shown as follows:

setRepeating(AlarmType, Time (in milliseconds), Interval,
 PendingIntent);

For the Interval, you can specify the interval time in milliseconds or use one of the predefined
AlarmManager constants:

ff INTERVAL_DAY

ff INTERVAL_FIFTEEN_MINUTES

ff INTERVAL_HALF_DAY

ff INTERVAL_HALF_HOUR

ff INTERVAL_HOUR

See also
ff Developer Docs: AlarmManager at https://developer.android.com/

reference/android/app/AlarmManager.html

Receive notification of device boot
Android sends out many intents during its lifetime. One of the first intents sent is ACTION_
BOOT_COMPLETED. If your application needs to know when the device boots, you need to
capture this intent.

This recipe will walk you through the steps required to be notified when the device boots.

Chapter 14

363

Getting ready
Create a new project in Android Studio and call it DeviceBoot. Use the default Phone &
Tablet option and select Empty Activity when prompted for Activity Type.

How to do it...
To start, open the Android Manifest and follow these steps:

1.	 Add the following permission:
<uses-permission android:name=
 "android.permission.RECEIVE_BOOT_COMPLETED"/>

2.	 Add the following <receiver> to the <application> element, at the same level
as the existing <activity> element:
<receiver android:name=".BootBroadcastReceiver">
 <intent-filter>
 <action android:name="android.intent.action.
 BOOT_COMPLETED"/>
 </intent-filter>
</receiver>

3.	 Create a new Java class called BootBroadcastReceiver using the following code:
public class BootBroadcastReceiver extends
 BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 if (intent.getAction().equals(
 "android.intent.action.BOOT_COMPLETED")) {
 Toast.makeText(context, "BOOT_COMPLETED",
 Toast.LENGTH_SHORT).show();
 }
 }
}

4.	 Reboot the device to see the Toast.

How it works...
When the device boots, Android will send the BOOT_COMPLETED intent. As long as our
application has the permission to receive the intent, we will receive notifications in our
Broadcast Receiver.

Getting your app ready for the Play Store

364

There are three aspects to make this work:

ff A permission for RECEIVE_BOOT_COMPLETED

ff Adding BOOT_COMPLETED to the receiver intent filter

ff Checking for the BOOT_COMPLETED action in the Broadcast Receiver

Obviously, you'll want to replace the Toast message with your own code, such as for recreating
any alarms you might need.

There's more...
If you followed the previous recipe, then you already have a Broadcast Receiver. You don't
need a separate BroadcastReceiver for each action, just check for each action as needed.
Here's an example if we need to handle another action:

public void onReceive(Context context, Intent intent) {
 if (intent.getAction().equals(
 "android.intent.action.BOOT_COMPLETED")) {
 Toast.makeText(context, "BOOT_COMPLETED",
 Toast.LENGTH_SHORT).show();
 } else if (intent.getAction().equals("<another_action>")) {
 //handle another action
 }
}

See also
ff Developer Docs: Intent at https://developer.android.com/reference/

android/content/Intent.html

Using the AsyncTask for background work
Throughout this book, we have mentioned the importance of not blocking the main thread.
Performing long running operations on the main thread can cause your application to appear
sluggish, or worse, hang. If your application doesn't respond within about 5 seconds, the
system will likely display the Application Not Responding (ANR) dialog with the option to
terminate your app. (This is something you will want to avoid as it's a good way to get your
app uninstalled.)

Android applications use a single thread model with two simple rules, as follows:

ff Don't block the main thread

ff Perform all UI operations on the main thread

Chapter 14

365

When Android starts your application, it automatically creates the main (or UI) thread. This
is the thread from which all UI operations must be called. The first rule is "Don't block the
main thread". This means that you need to create a background, or a worker, thread for
any long-running or potentially-blocking task. This is why all network based tasks should be
performed off the main thread.

Android offers the following options when working with background threads:

ff Activity.runOnUiThread()

ff View.post()

ff View.postDelayed()

ff Handler

ff AsyncTask

This recipe will explore the AsyncTask class; since it was created previously, you wouldn't
have to use the Handler or post methods directly.

Getting ready
Create a new project in Android Studio and call it: AsyncTask. Use the default Phone &
Tablet option and select Empty Activity when prompted for Activity Type.

How to do it...
We only need a single button for this example. Open activity_main.xml and follow
these steps:

1.	 Replace the existing TextView with the following button:
<Button
 android:id="@+id/buttonStart"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Start"
 android:layout_centerInParent="true"
 android:onClick="start" />

2.	 Open MainActivity.java and add the following global variable:
Button mButtonStart;

Getting your app ready for the Play Store

366

3.	 Add the AsyncTask class:
private class CountingTask extends AsyncTask<Integer, Integer,
Integer> {
 @Override
 protected Integer doInBackground(Integer... params) {
 int count = params[0];
 for (int x=0;x<=count; x++){
 //Nothing to do
 }
 return count;
 }
 @Override
 protected void onPostExecute(Integer integer) {
 super.onPostExecute(integer);
 mButtonStart.setEnabled(true);
 }
}

4.	 Add the following code to the onCreate() to initialize the button:
mButtonStart=(Button)findViewById(R.id.buttonStart);

5.	 Add the method for the button click:
public void start(View view){
 mButtonStart.setEnabled(false);
 new CountingTask().execute(10000000);
}

6.	 You're ready to run the application on a device or emulator.

How it works...
This is a very simple example of the AsyncTask just to get it working. Technically, only
doInBackground() is required, but usually, you may want to receive notifications via
onPostExecute() when it finishes.

The AsyncTask works by creating a worker thread for the doInBackground() method,
then responds back on the UI thread in the onPostExecute() callback.

Notice how we have waited until onPostExecute() is called before we do any UI actions
such as enabling the button. If we attempt to modify the UI in the worker thread, it would
either not compile or throw a runtime exception. You should also note how we instantiated a
new CountingTask object on each button click. This is because an AsyncTask can only
execute once. Attempting to call execute again will also throw an exception.

Chapter 14

367

There's more...
At its minimum, the AsyncTask can be very simple but it is still very flexible with more
options available if you need them. When using an AsyncTask with an Activity, it's important
to understand whether the Activity is destroyed and recreated (such as during an orientation
change), or the AsyncTask continues to run. This can leave your AsyncTask orphaned and
it might respond back to the now destroyed activity (causing a NullPointer exception). For
this reason, it's common to use the AysncTask with a Fragment (which is not destroyed on
screen rotation), or use a Loader instead. (See the link for Loaders in the following section.)

Parameter types
For many people, the most confusing aspect of the AsyncTask is the parameters when
creating their own class. If you look at our class declaration, there are three parameters
for the AsyncTask; they are defined as follows:

AsyncTask<Params, Progress, Result >

The parameters are generic types and used as follows:

ff Params: This is the parameter type to call doInBackground()

ff Progress: This is the parameter type to post updates

ff Result: This is the parameter type to post results

When you declare your own class, substitute the parameters with the variable type you need.

Here's the process flow for the AsyncTask and how the preceding parameters are used:

ff onPreExecute(): This is called before doInBackground() begins

ff doInBackground(Params): This executes in a background thread

ff onProgressUpdate(Progress): This is called (on the UI thread) in response
to the calling publishProgress(Progress) in the worker thread

ff onPostExecute(Result): This is called (on the UI thread) when the worker
thread finishes

Cancel the task
To cancel the task, call the cancel method on the object as follows:

< AsyncTask>.cancel(true);

You will need to have the object instance to access the cancel() method. (We did
not save the object in our previous example.) After setting cancel(true), the calling
isCancelled() in doInBackground() will return true, allowing you to exit a loop. If
cancelled, onCancelled() will be called instead of onPostExecute().

Getting your app ready for the Play Store

368

See also
ff Refer to the Access data in the background using a Loader recipe, in Chapter 6,

Working with Data

ff Developer Docs: AsyncTask at http://developer.android.com/reference/
android/os/AsyncTask.html

Adding speech recognition to your app
Android 2.2 (API 8) introduced speech recognition in Android, and it continues to improve
with almost every new major Android release. This recipe will demonstrate how to add
speech recognition to your app using the Google Speech service.

Getting ready
Create a new project in Android Studio and call it SpeechRecognition. Use the default
Phone & Tablet option and select Empty Activity when prompted for Activity Type.

How to do it...
We'll start by adding a Speak Now (or microphone) button to the layout, then we'll add
the necessary code to call the speech recognizer. Open activity_main.xml and follow
these steps:

1.	 Replace the existing TextView with the following XML:
<TextView
 android:id="@+id/textView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentTop="true"
 android:layout_alignParentLeft="true"
 android:layout_alignParentStart="true" />
<ImageButton
 android:id="@+id/imageButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:layout_centerHorizontal="true"
 android:src="@android:drawable/ic_btn_speak_now"
 android:onClick="speakNow"/>

Chapter 14

369

2.	 Define the REQUEST_SPEECH constant:
private final int REQUEST_SPEECH=1;

3.	 Add the following code to the existing onCreate() callback:
PackageManager pm = getPackageManager();
List<ResolveInfo> activities = pm.queryIntentActivities(
 new Intent(RecognizerIntent.
 ACTION_RECOGNIZE_SPEECH), 0);
if (activities.size() == 0) {
 findViewById(R.id.imageButton).setEnabled(false);
 Toast.makeText(this, "Speech Recognition Not
 Supported", Toast.LENGTH_LONG).show();
}

4.	 Add the button click method:
public void speakNow(View view) {
 Intent intent = new Intent(RecognizerIntent.
 ACTION_RECOGNIZE_SPEECH);
 intent.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL,
 RecognizerIntent.LANGUAGE_MODEL_FREE_FORM);
 startActivityForResult(intent, REQUEST_SPEECH);
}

5.	 Add the following code to override the onActivityResult() callback:
@Override
protected void onActivityResult(int requestCode, int
 resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode, data);
 if (requestCode==REQUEST_SPEECH && resultCode ==
 RESULT_OK && data!=null) {
 ArrayList<String> result = data
 .getStringArrayListExtra(
 RecognizerIntent.EXTRA_RESULTS);
 TextView textView = (TextView)findViewById(
 R.id.textView);
 if (result.size()>0){
 textView.setText("");
 for (String item : result) {
 textView.append(item+"\n");
 }
 }
 }
}

6.	 You're ready to run the application on a device or emulator.

Getting your app ready for the Play Store

370

How it works...
The work here is done by the Google Speech Recognizer included in Android. To make sure
the service is available on the device, we call PackageManager in onCreate(). If at least
one activity is registered to handle the RecognizerIntent.ACTION_RECOGNIZE_SPEECH
intent, then we know it's available. If no activities are available, we display a Toast indicating
speech recognition is not available and disable the mic button.

The button click starts the recognition process by calling an intent created with
RecognizerIntent.ACTION_RECOGNIZE_SPEECH.

The EXTRA_LANGUAGE_MODEL parameter is required and has the following two choices:

ff LANGUAGE_MODEL_FREE_FORM

ff LANGUAGE_MODEL_WEB_SEARCH

We get the result back in the onActivityResult() callback. If we get back RESULT_
OK, then we should have a list of words recognized, which we can retrieve using
getStringArrayListExtra(). The array list will be ordered starting with the
highest recognition confidence.

If you want to retrieve the confidence rating, retrieve the float array using EXTRA_
CONFIDENCE_SCORES. Here's an example:

float[] confidence = data.getFloatArrayExtra(
 RecognizerIntent.EXTRA_CONFIDENCE_SCORES);

The confidence rating is optional and may not be present. A score of 1.0 indicates highest
confidence, while 0.0 indicates lowest confidence.

There's more...
Using the intent is a quick and easy way to get speech recognition; however, if you would
prefer not to use the default Google activity, you can call the SpeechRecognizer class
directly. Here's an example of how to instantiate the class:

SpeechRecognizer speechRecognizer =
 SpeechRecognizer.createSpeechRecognizer(this);

You will need to add the RECORD_AUDIO permission and implement the
RecognitionListener class to handle the speech events. (See the following
links for more information.)

Chapter 14

371

See also
ff Developer Docs: RecognizerIntent at http://developer.android.com/

reference/android/speech/RecognizerIntent.html

ff Developer Docs: SpeechRecognizer at http://developer.android.com/
reference/android/speech/SpeechRecognizer.html

ff Developer Docs: RecognitionListener at http://developer.android.com/
reference/android/speech/RecognitionListener.html

Push Notification using GCM
GCM, Google's version of Push Notification, allows your application to receive messages.
The idea is similar to SMS messages, but much more flexible. There are three components
to GCM:

ff Your server (this is where you initiate the message)

ff Google's GCM server

ff Android device (although GCM is also available on other platforms)

When the user starts your application, your code needs to connect to the GCM server and
obtain a device token, then send that token to your server. Your server is responsible for
initiating the message and passing it to the GCM server. Your server needs to track the device
tokens that have to be sent when initiating the message. (Your server tells the GCM server
which device tokens needs to be sent.)

You can implement your own server or choose to use one of many services available. The next
chapter, Backend Service Options, will look at several BaaS options, many of which also offer
Push Notification. (The Simple Testing Option section offers an option to verify that your code
is working.)

This recipe will walk you through the steps to add GCM using the current (Version 8.3) Google
Services library. Before getting to the steps, it's worth noting that GCM is supported all the
way back to API 8, as long as the user has a Google account. A Google account is not required
after Android 4.0.4.

Getting ready
Create a new project in Android Studio and call it GCM. Use the default Phone & Tablet option
and select Empty Activity when prompted for Activity Type.

Getting your app ready for the Play Store

372

GCM uses the Google Services plugin, which requires a Google Services configuration file
available from the Google Developer Console. To create the configuration file, you will need
the following information:

ff Your application package name

ff When you have the information, log in to this Google link and follow the wizard to
enable GCM for your app: https://developers.google.com/mobile/add

If you download the source files, you will need to create a new package
name when following the preceding steps, as the existing package name
has already been registered.

How to do it...
After completing the preceding Getting Ready section, follow these steps:

1.	 Copy the google-services.json file, which you downloaded in the Getting Ready
section, to your app folder (<project folder>\GCM\app).

2.	 Open the project Gradle build file: build.gradle (Project: GCM), and add the
following to the buildscript dependencies sections:
classpath 'com.google.gms:google-services:1.5.0-beta2'

3.	 Open the app module Gradle build file: build.gradle (Module: app), and add
the following statement to the beginning of the file (above the android section):
apply plugin: 'com.google.gms.google-services'

4.	 In the same module build file as step 3, add the following statement to the
dependencies section:
compile 'com.google.android.gms:play-services-auth:8.3.0'

5.	 Open the Android Manifest and add the following permissions:
<uses-permission android:name=
 "android.permission.WAKE_LOCK" />
<permission android:name="< packageName >
 .permission.C2D_MESSAGE"
 android:protectionLevel="signature" />
<uses-permission android:name="< packageName >
 .permission.C2D_MESSAGE" />

6.	 Within the <application> element, add the following <receiver> and
<service> declarations (these should be at the same level as the <activity>):
<receiver
 android:name="com.google.android.gms.gcm.GcmReceiver"
 android:exported="true"

Chapter 14

373

 android:permission="com.google.android.c2dm.
 permission.SEND" >
 <intent-filter>
 <action android:name="com.google.android.c2dm.
 intent.RECEIVE" />
 <category android:name="<packageName>" />
 <action android:name="com.google.android.
 c2dm.intent.REGISTRATION" />
 </intent-filter>
</receiver>
<service
 android:name=".GCMService"
 android:exported="false" >
 <intent-filter>
 <action android:name="com.google.android.c2dm.
 intent.GCM_RECEIVED_ACTION"/>
 <action android:name="com.google.android.c2dm.
 intent.RECEIVE" />
 </intent-filter>
</service>
<service
 android:name=".GCMInstanceService"
 android:exported="false">
 <intent-filter>
 <action android:name="com.google.android.gms.
 iid.InstanceID" />
 </intent-filter>
</service>
<service
 android:name=".GCMRegistrationService"
 android:exported="false">
</service>

7.	 Create a new Java class called GCMRegistrationService that extends
IntentService, as follows:
public class GCMRegistrationService extends IntentService {

 private final String SENT_TOKEN="SENT_TOKEN";

 public GCMRegistrationService() {
 super("GCMRegistrationService");
 }

Getting your app ready for the Play Store

374

 @Override
 protected void onHandleIntent(Intent intent) {
 super.onCreate();
 SharedPreferences sharedPreferences =
 PreferenceManager.
 getDefaultSharedPreferences(this);
 try {
 InstanceID instanceID = InstanceID.
 getInstance(this);
 String token = instanceID.getToken(
 getString(R.string.gcm_defaultSenderId),
 GoogleCloudMessaging.INSTANCE_ID_SCOPE,
 null);
 Log.i("GCMRegistrationService", "GCM
 Registration Token: " + token);
 //sendTokenToServer(token);
 sharedPreferences.edit().putBoolean(SENT_TOKEN,
 true).apply();
 } catch (Exception e) {
 sharedPreferences.edit().putBoolean(SENT_TOKEN,
 false).apply();
 }
 }
}

8.	 Create a new Java class called GCMInstanceService that extends
InstanceIDListenerService, as follows:
public class GCMInstanceService extends
 InstanceIDListenerService {
 @Override
 public void onTokenRefresh() {
 Intent intent = new Intent(this,
 GCMRegistrationService.class);
 startService(intent);
 }
}

9.	 Create a new Java class called GCMService that extends GcmListenerService,
as follows:
public class GCMService extends GcmListenerService {

 @Override
 public void onMessageReceived(String from, Bundle data) {
 super.onMessageReceived(from, data);

Chapter 14

375

 Log.i("GCMService", "onMessageReceived(): " +
 data.toString());
 }
}

10.	 Add the following code to the existing onCreate() callback:
Intent intent = new Intent(this,
 GCMRegistrationService.class);
startService(intent);

11.	 You're ready to run the application on a device or emulator.

How it works...
Most of the actual GCM code is encapsulated within the Google APIs, simplifying the
implementation. We just have to set up the project to include Google Services, and give
our app the required permissions.

Important! When adding the permissions in Steps 5 and 6, replace the
<packageName> placeholder with your application's package name.

The most complicated aspect of GCM is probably the multiple services required. Even though
the code in each service is minimal, each service has a specific task. There are two main
aspects of GCM:

ff Registering the app with the GCM server

ff Receiving messages

This is the code to register with the GCM server:

String token = instanceID.getToken(getString(
 R.string.gcm_defaultSenderId),
 GoogleCloudMessaging.INSTANCE_ID_SCOPE, null);

We don't call getToken() in the Activity, because it could block the UI thread. Instead, we
call the GCMRegistrationService, which handles the call in a background thread. After
you receive the device token, you need to send it to your server, as it is needed when initiating
a message.

The process of receiving a GCM message is handled in GCMService, which extends
GcmListenerService. Since the Google API already handles most of the work, all
we have to do is respond to the onMessageReceived() callback.

Getting your app ready for the Play Store

376

There's more...
To make it easier to type, we left out an important Google Services API verification that should
be included in any production application. Instead of calling GCMRegistrationService
directly, as we did in onCreate() in the preceding section, first check whether
the Google API Service is available. Here's an example showing how to call the
isGooglePlayServicesAvailable() method:

private boolean isGooglePlayServicesAvailable() {
 GoogleApiAvailability googleApiAvailability =
 GoogleApiAvailability.getInstance();
 int resultCode = googleApiAvailability.
 isGooglePlayServicesAvailable(this);
 if (resultCode != ConnectionResult.SUCCESS) {
 if (googleApiAvailability.
 isUserResolvableError(resultCode)) {
 googleApiAvailability.getErrorDialog(this, resultCode,
 PLAY_SERVICES_RESOLUTION_REQUEST).show();
 } else {
 Toast.makeText(MainActivity.this, "Unsupported
 Device", Toast.LENGTH_SHORT).show();
 finish();
 }
 return false;
 }
 return true;
}

Then, change the onCreate() code to call this method first:

if (isGooglePlayServicesAvailable()) {
 Intent intent = new Intent(this,
 GCMRegistrationService.class);
 startService(intent);
}

Simple testing option
To help to verify that your code is working correctly, a testing application was created and
posted on Google Play. This app will run on both a physical device and an emulator. The
Google Play listing also includes a link to download the source code and run the project
directly, making it easier to enter the required fields.

Chapter 14

377

GCM (Push Notification) Tester: Refer to the following link for more
information:
https://play.google.com/store/apps/details?id=com.
eboyer.gcmtester

See also
ff Refer to the Google Cloud Messaging web page at https://developers.

google.com/android/reference/com/google/android/gms/gcm/
GoogleCloudMessaging

ff Refer to the About the GCM Connection server web page at https://developers.
google.com/cloud-messaging/server

How to add Google sign-in to your app
A Google sign-in allows your users to sign in to your application using their Google credentials.
This recipe will walk you through the process of adding a Google sign-in to your application.
Here's a screenshot showing the Google sign-in button in the application that we'll create in
the recipe:

Getting your app ready for the Play Store

378

Getting ready
Create a new project in Android Studio and call it GoogleSignIn. Use the default Phone &
Tablet option and select Empty Activity when prompted for Activity Type.

The Google sign-in uses the Google Services plugin, which requires a Google Services
Configuration file, which is available from the Google Developer Console. To create the
configuration file, you will need the following information:

ff Your application package name

ff Your signing certificate's SHA-1 hash code (see the Authenticating Your Client link
at the end of the recipe for more information)

When you have the information, log in to this Google link and follow the wizard to enable
sign-in:

https://developers.google.com/mobile/add

If you are downloading the source files, you will need to create a new package
name when following the preceding steps, as the existing package name has
already been registered.

How to do it...
After completing the preceding Getting Ready section, follow these steps:

1.	 Copy the google-services.json file you downloaded in the Getting Ready section
to your app folder (<project folder>\GoogleSignIn\app)

2.	 Open the project Gradle build file: build.gradle (Project: GoogleSignIn),
and add the following to the buildscript dependencies section:
classpath 'com.google.gms:google-services:1.5.0-beta2'

3.	 Open the app module Gradle build file: build.gradle (Module: app), and add
the following statement to the beginning of the file (above the android section):
apply plugin: 'com.google.gms.google-services'

4.	 In the same module build file as Step 3, add the following statement to the
dependencies section:
compile 'com.google.android.gms:play-services-auth:8.3.0'

Chapter 14

379

5.	 Open activity_main.xml and replace the existing TextView with the
following XML:
<TextView
 android:id="@+id/textView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentTop="true" />

<com.google.android.gms.common.SignInButton
 android:id="@+id/signInButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerInParent="true" />

6.	 Open MainActivity.java and add the following global declarations:
private final int REQUEST_SIGN_IN=1;
GoogleApiClient mGoogleApiClient;

7.	 Add the following OnConnectionFailedListener:
GoogleApiClient.OnConnectionFailedListener
 mOnConnectionFailedListener = new
 GoogleApiClient.OnConnectionFailedListener() {
 @Override
 public void onConnectionFailed(ConnectionResult
 connectionResult) {
 Toast.makeText(MainActivity.this,
 "connectionResult="+connectionResult.
 getErrorMessage(),
 Toast.LENGTH_SHORT).show();
 }
};

8.	 Add the following code to the existing onCreate():
GoogleSignInOptions googleSignInOptions = new
 GoogleSignInOptions.Builder(
 GoogleSignInOptions.DEFAULT_SIGN_IN)
 .requestEmail()
 .build();
mGoogleApiClient = new GoogleApiClient.Builder(this)
 .addOnConnectionFailedListener(
 mOnConnectionFailedListener)
 .addConnectionCallbacks(mConnectionCallbacks)
 .addApi(Auth.GOOGLE_SIGN_IN_API, googleSignInOptions)
 .build();

Getting your app ready for the Play Store

380

findViewById(R.id.signInButton).setOnClickListener(
 new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 signIn();
 }
});

9.	 Create an override for the onActivityResult() callback as follows:
@Override
public void onActivityResult(int requestCode, int
 resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode, data);
 if (requestCode == REQUEST_SIGN_IN) {
 GoogleSignInResult googleSignInResult =
 Auth.GoogleSignInApi.
 getSignInResultFromIntent(data);
 if (googleSignInResult.isSuccess()) {
 GoogleSignInAccount googleSignInAccount =
 googleSignInResult.getSignInAccount();
 TextView textView =
 (TextView)findViewById(R.id.textView);
 textView.setText("Signed in: " +
 googleSignInAccount.getDisplayName());
 findViewById(R.id.signInButton).
 setVisibility(View.GONE);
 }
 }
}

10.	 You're ready to run the application on a device or emulator.

How it works...
Google has made it relatively simple to add a Google sign-in with their GoogleApiClient
and GoogleSignInOptions APIs. First, we create a GoogleSignInOptions object with
the builder. This is where we specify the sign-in options we want, such as requesting e-mail ID.
Then, we pass it to the GoogleApiClient builder.

Chapter 14

381

When the user clicks on the Google sign-in button (created with the com.google.android.
gms.common.SignInButton class), we send an Intent for GoogleSignInApi to the
handle. We process the result in onActivityResult(). If the sign-in was successful, we
can get the account details. In our example, we just get the e-mail, but additional information
is available such as the following:

ff getDisplayName(): This is the display name

ff getEmail(): The e-mail address

ff getId(): The unique ID for the Google account

ff getPhotoUrl(): The display photo

ff getIdToken(): This is for the backend authentication

See the GoogleSignInAccount link in the See also section for a complete list.

There's more...
If you want your application to be available to a wider audience, you'll want to think
about localization.

Localization resources
Google provides many localized strings in the SDK, located at this link: <SDK install
folder>/sdk/extras/google/google_play_services/libproject/google-
play-services_lib/res/.

See also
ff Refer to the web page talking about authenticating your client at https://

developers.google.com/android/guides/client-auth

ff Visit GoogleSignInAccount at https://developers.google.com/
android/reference/com/google/android/gms/auth/api/signin/
GoogleSignInAccount

383

15
The Backend as a

Service Options

In this chapter, we will cover the following topics:

ff App42

ff Backendless

ff Buddy

ff Firebase

ff Kinvey

Introduction
As your application and user base grow, it's likely you'll want to connect your app across
devices and even users, such as a high score leaderboard. You have two choices:

ff Create and maintain your own server

ff Use a Backend as a Service (BaaS) provider

As a mobile developer, creating and maintaining a web server is a time consuming prospect
that could likely divert you from your development efforts.

Here's some background information if you are unfamiliar with BaaS
providers:
Wikipedia – Mobile backend as a service:
https://en.wikipedia.org/wiki/Mobile_backend_
as_a_service

The Backend as a Service Options

384

We're going to take a look at several BaaS providers with features specifically targeting
Android developers. Only the providers offering native Android support and free subscription
are included. (Providers offering only a free trial or paid-only plans were not included.) As your
application outgrows the free tier, all these providers offer higher tier services with varying
monthly fees.

The following table provides quick comparison of the monthly free service offered by
each provider:

Provider Monthly Users API Calls Push Notification File Storage

Firebase Unlimited 100 SC N/A 1 GB
Buddy * 20/sec 5 Million 10 GB
App42 * 1 Million / month 1 Million 1 GB
Kinvey 1000 * * 30 GB
Backendless 100 50/sec 1 Million 20 GB

 * = not posted on their website

 N/A = feature Not Available

 SC = Simultaneous Connections

Disclaimer: The information for the preceding table and following recipes
was obtained from their public websites, and is subject to change at their
discretion. As you know, the mobile industry is constantly changing; expect
prices and services to change. Use this information as a starting point only.

Lastly, this is not meant to be an exhaustive list of BaaS providers. Hopefully, this chapter
will provide a good introduction to what a BaaS can do and how you can make use of one
for your app. The recipes that follow will look at each provider and take you through the
steps of adding their library to your project. This will give you a direct comparison between
the services. As you will see, some services are easier to use than others, and this may be a
deciding factor.

App42
App42 is the BaaS API product of ShepHertz, a cloud provider of multiple services, including
gaming platforms, Platform as a Service, and Marketing Analytics. They have a very rich
feature set, including many services especially useful for games.

Chapter 15

385

The App42 Android SDK supports the following:

ff User service

ff Storage service

ff Custom code service

ff Push notification service

ff Event service

ff Gift management service

ff Timer service

ff Social service

ff A/B test service

ff Buddy service

ff Avatar service

ff Achievement service

ff Leaderboard service

ff Reward service

ff Upload service

ff Gallery service

ff Geo service

ff Session service

ff Review service

ff Cart service

ff Catalogue service

ff Message service

ff Recommender service

ff Email service

ff Logging service

To register for App42/ShepHertz, visit the following link:
https://apphq.shephertz.com/register

The Backend as a Service Options

386

Here's a screenshot of the App4 sign up screen:

Getting ready
Create a new project in Android Studio and call it App42. Use the default Phone & Tablet
option and select Empty Activity when prompted for Activity Type.

Download and extract the App42 SDK from the following link:

https://github.com/shephertz/App42_ANDROID_SDK/archive/master.zip

After creating your App42 account (see the preceding link), log in to the AppHQ Management
Console, and register your app. You will need the ApiKey and SecretKey.

Chapter 15

387

How to do it...
To add support for App42 to your project, start by opening the Android Manifest and following
these steps:

1.	 Add the following permissions:
<uses-permission android:name=
 "android.permission.INTERNET"/>
<uses-permission android:name=
 "android.permission.ACCESS_NETWORK_STATE" />

2.	 Open the following folder in your file browser: <project folder>\App42\app\
libs (if the libs folder does not exist, create it) and copy the App42_ANDROID-
CAMPAIGN_x.x.jar file to the app\libs folder.

3.	 Open the app module's Gradle build file: build.gradle (Module: app) and add
the following to the dependencies section:
compile files('libs/App42_ANDROID-CAMPAIGN_x.x.jar')

4.	 Open ActivityMain.java and add the following import:
import com.shephertz.app42.paas.sdk.android.App42API;

5.	 Add the following code to the onCreate() callback:
App42API.initialize(this, "YOUR_API_KEY",
 "YOUR_SECRET_KEY");

6.	 You're ready to run the application on a device or emulator.

How it works...
Unfortunately, App42 does not support the Gradle build format, so you need to download the
JAR file and copy it to the \libs folder manually.

In Step 3, replace x.x in App42_ANDROID-CAMPAIGN_x.x.jar with the current version
number from the file you downloaded.

Replace the YOUR_API_KEY and YOUR_SECRET_KEY in step 5 with the credentials you
received when you registered your application with App42.

The Backend as a Service Options

388

There's more...
Here's an example of registering a user with the App42 API:

UserService userService = App42API.buildUserService();
userService.createUser("userName", "password", "email",
 new App42CallBack() {
 public void onSuccess(Object response) {
 User user = (User)response;
 Log.i("UserService","userName is " + user.getUserName());
 Log.i("UserService", "emailId is " + user.getEmail());
 }
 public void onException(Exception ex) {
 System.out.println("Exception Message"+ex.getMessage());
 }
});

See also
ff For more information, refer to the App42 web page at http://api.shephertz.

com/

Backendless
Besides MBaaS (Mobile Backend as a Service, as they call it), Backendless offers several
other services such as Hosting, API Services, and Marketplace. Their MBaaS features include:

ff User management

ff Data persistence

ff Geolocation

ff Media streaming

ff Publish/Subscribe messaging

ff Push notifications

ff Custom business logic

ff Analytics

ff Mobile code generation

Chapter 15

389

To sign up for Backendless, follow this link:
https://develop.backendless.com/#registration

Here's a screenshot of the Backendless sign up window:

Getting ready
Create a new project in Android Studio and call it Backendless. Use the default Phone &
Tablet options, and select Empty Activity when prompted for Activity Type.

You will need a Backendless account (see the preceding link) and to register your application
through their Backendless Console. Once you have your App ID and Secret Key, begin the
following steps.

The Backend as a Service Options

390

How to do it...
To add Backendless to your project, open the Android Manifest and follow these steps:

1.	 Add the following permissions:
<uses-permission android:name=
 "android.permission.INTERNET"/>
<uses-permission android:name=
 "android.permission.ACCESS_NETWORK_STATE" />

2.	 Open the app module Gradle build file: build.gradle (Module: app) and add
the following to the dependencies section:
compile 'com.backendless:android:3.0.3'

3.	 Open ActivityMain.java and add the following import:
import com.backendless.Backendless;

4.	 Add the following code to the onCreate() callback:
String appVersion = "v1";
Backendless.initApp(
 this, YOUR_APP_ID, YOUR_SECRET_KEY, appVersion);

5.	 You're ready to run the application on a device or emulator.

How it works...
Replace YOUR_APP_ID and YOUR_SECRET_KEY in Step 4 with the credentials you received
from the Backendless Console.

If you prefer to download the SDK directly instead of using the Maven dependency, it is
available here: https://backendless.com/sdk/java/3.0.0/backendless-sdk-
android.zip.

There's more...
Here's an example of registering a user with the BackendlessUser object:

BackendlessUser user = new BackendlessUser();
user.setEmail("<user@email>");
user.setPassword("<password>");
Backendless.UserService.register(user, new
 BackendlessCallback<BackendlessUser>() {
 @Override

Chapter 15

391

 public void handleResponse(BackendlessUser backendlessUser) {
 Log.d("Registration", backendlessUser.getEmail() + "
 successfully registered");
 }
});

See also
ff For more information, refer to the Backendless web page at https://backendless.

com/

Buddy
Buddy is a bit different than the other BaaS providers in this list as they are heavily focused on
connecting devices and sensors. To help maintain privacy regulations, Buddy lets you chose to
host your data in the US or EU.

Buddy supports common scenarios like:

ff Recording metrics events

ff Sending push notifications

ff Receiving and securely storing telemetry data

ff Storing and managing binary files

ff Deep mobile analytics about how customers are using the application

ff Integrate device or application data with your company BI systems

ff Sandboxed, private data in the geographical location of your choice.

If you'd like to review or contribute to the Buddy SDK, the source is available with the following
Git command:

git clone https://github.com/BuddyPlatform/Buddy-Android-SDK.git

To sign up for Buddy, follow this link:
https://www.buddyplatform.com/Signup

The Backend as a Service Options

392

Here's a screenshot of the Buddy sign up:

Getting ready
Create a new project in Android Studio and call it Buddy. Use the default Phone & Tablet
options and select Empty Activity when prompted for Activity Type.

You will need a Buddy account (see the preceding link), and will have to register your
application through their Dashboard. Once you have your App ID and App Key, begin
the following steps.

How to do it...
To add Buddy to your project, open the Android Manifest and follow these steps:

1.	 Add the following permissions:
<uses-permission android:name=
 "android.permission.INTERNET"/>
<uses-permission android:name=
 "android.permission.ACCESS_NETWORK_STATE" />

Chapter 15

393

2.	 Open the app module Gradle build file: build.gradle (Module: app) and add
the following to the dependencies section:
compile 'com.buddy:androidsdk:+'

3.	 Open ActivityMain.java and add the following import:
import com.buddy.sdk.Buddy;

4.	 Add the following code to the onCreate() callback:
Buddy.init(myContext, "appId", "appKey");

5.	 You're ready to run the application on a device or emulator.

How it works...
Replace appId and appKey in Step 4 with the credentials you received from the
Buddy Dashboard.

Similar to most of the other BaaS providers, we simply add a reference to the Maven
repository to our Gradle build. Then, we add an import and start calling the Buddy APIs.

There's more...
Here's an example of registering a user with Buddy:

Buddy.createUser("someUser", "somePassword", null, null, null,
 null, null, null, new BuddyCallback<User>(User.class) {
 @Override
 public void completed(BuddyResult<User> result) {
 if (result.getIsSuccess()) {
 Log.w(APP_LOG, "User created: " +
 result.getResult().userName);
 }
 }
});

See also
ff For more information, refer to the Buddy web page : https://buddy.com/

The Backend as a Service Options

394

Firebase
Firebase is a BaaS provider primarily focused on database functionality. While they are not as
fully featured as most of the other BaaS providers, they do databases well. They are the only
provider on this list with autosyncing database functionality.

Firebase services include:

ff Firebase real-time database

ff Firebase authentication

ff Firebase hosting

ff User authentication—e-mail and password, Facebook, Twitter, GitHub, and Google

Since they were recently acquired by Google, you can expect further integration with Google
Cloud solutions, as you can see on this link:

https://cloud.google.com/solutions/mobile/firebase-app-engine-
android-studio

To sign up with Firebase, visit this link:
https://www.firebase.com/login/

Here's a screenshot of the Firebase sign up window:

Chapter 15

395

Getting ready
Create a new project in Android Studio and call it Firebase. Use the default Phone & Tablet
options and select Empty Activity when prompted for Activity Type.

You will need the Firebase URL that is provided when you register your application with Firebase.

How to do it...
To add Firebase to your project, start by opening the Android Manifest and following
these steps:

1.	 Add the following permissions:
<uses-permission android:name=
 "android.permission.INTERNET"/>

2.	 Open the app module Gradle build file: build.gradle (Module: app) and add
the following to the dependencies section:
compile 'com.firebase:firebase-client-android:2.5.0+'

3.	 Open ActivityMain.java and add the following import:
import com.firebase.client.Firebase;

4.	 Add the following code to the onCreate() callback:
Firebase.setAndroidContext(this);
Firebase firebase = new Firebase("https://<YOUR-FIREBASE-APP>.
firebaseio.com/");

5.	 You're ready to run the application on a device or emulator.

How it works...
Adding support for Firebase to your application is rather straight forward. Replace the
<YOUR-FIREBASE-APP> placeholder with the link provided by Firebase when you
registered your app.

There's more...
Here's an example of registering a user with Firebase:

firebase.createUser("bobtony@firebase.com",
 "correcthorsebatterystaple", new
 Firebase.ValueResultHandler<Map<String, Object>>() {
 @Override

The Backend as a Service Options

396

 public void onSuccess(Map<String, Object> result) {
 Log.i("Firebase", "Successfully created user account with
 uid: " + result.get("uid"));
 }
 @Override
 public void onError(FirebaseError firebaseError) {
 // there was an error
 }
});

See also
ff For more information, refer to the Firebase web page at https://www.firebase.

com/

Kinvey
Kinvey is one of the earliest providers to begin offering mobile backend services. Their
features include:

ff User management

ff Data storage

ff File storage

ff Push notifications

ff Social network integration

ff Location services

ff Lifecycle management

ff Versioning

Sign up for Kinvey at https://console.kinvey.com/sign-up.

Chapter 15

397

Here's a screenshot of the Kinvey sign up window:

Getting ready
Create a new project in Android Studio and call it Kinvey. Use the default Phone & Tablet
options and select Empty Activity when prompted for Activity Type.

Download and extract the Kinvey SDK from the following link: download.kinvey.com/
Android/kinvey-android-2.10.5.zip

You will need a Kinvey account (see the preceding link), and will have to register your
application through their developer console. Once you have your App Key and App Secret,
begin the following steps.

The Backend as a Service Options

398

How to do it...
To add Kinvey to your project, follow these steps:

1.	 Add the following permission to the Android Manifest:
<uses-permission android:name=
 "android.permission.INTERNET"/>

2.	 Open the following folder in your file browser: <project folder>\Kinvey\app\
libs (if the libs folder does not exist, create it) and copy all the files from the SDK
lib and libJar folders to the app\libs folder.

3.	 Open the app module Gradle build file: build.gradle (Module: app) and add
the following repositories and dependencies (leave any existing entries in
place):
repositories {
 flatDir {
 dirs 'libs'
 }
}

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 compile(name:'kinvey-android-*', ext:'aar')
}

4.	 Open MainActivity.java and add the following import:
import com.kinvey.android.Client;

5.	 Add the following to the class declarations:
final Client mKinveyClient = new mKinveyClient(
 "your_app_key", "your_app_secret",
 this.getApplicationContext()).build();

6.	 You're ready to run the application on a device or emulator.

How it works...
Kinvey isn't the easiest of the BaaS to set up as it doesn't offer a simple Gradle dependency.
Instead, you need to add their libraries directly to the project libraries as we did in Step 2.

These steps will have the Kinvey client set up and ready to begin adding additional
functionality to your application. Just make sure to replace the placeholders in the
Kinvey Client Builder with your application credentials.

Chapter 15

399

There's more...
To verify your setup is working correctly, call the following code in the onCreate() method or
on a button click:

mKinveyClient.ping(new KinveyPingCallback() {
 public void onFailure(Throwable t) {
 Log.d("KinveyPingCallback", "Kinvey Ping Failed", t);
 }

 public void onSuccess(Boolean b) {
 Log.d("KinveyPingCallback", "Kinvey Ping Success");
 }
});

See also
ff For more information, refer to the Kinvey web page at http://www.kinvey.com/

401

Index
A
About the GCM Connection server web page

reference link 377
AccelerateInterpolator function 217
action 162
Action Bar

about 69
Search, adding to 118-123
setting, as Overlay 127

activity
about 1
data, passing to 10-12
declaring 2, 3
launching, menu item used 73
lifecycle 19-21
result, returning from 12, 13
shutting down 23
starting, with intent object 4-6
state, saving 14-17
switching between 6-10
lifecycle 19-21

activity lifecycle, states
active 22
destroyed 22
paused 22
stopped 22

Adapters
using 38-41

ADB
permissions, granting/revoking through 358

addAction()
button, adding to notification 179

alarm
best practices 358
canceling 362
features 358
repeating 362
scheduling 359-361
types 359

Alert Dialog
creating 170-172
custom layout, creating 173
icon, adding 172
list, using 172, 173

Android 6.0 Run-Time permission
model 354-357

Android Design Support Library
reference link 62

Android Developer Menu Resources site
reference link 74

Android Developer Sensor
reference link 206

Android Framework
Drawable Animation 215
Property Animation 215
View Animation 215

Android Manifest
about 3
OpenGL, declaring in 254

Android Notification Design Guidelines
reference link 162

Android Open Source Project (AOSP) 319
Android SDK 43, 48
Android SDK bundle

URL 2

402

Android Sensor Framework
events, using 206-208
using 202-205

Android Studio
mock location, setting in 339

Android Universal Image Loader 221
Android Universal Image Loader page

reference link 221
Android ViewPager Documentation

reference link 236
android.webkit

reference link 315
Animation resources web page

reference link 226
animations 215
app

Google sign-in, adding to 377-380
speech recognition, adding to 368-370

App42
about 384
adding, to project 387
reference link 388
reference link, for registration 385
sign up screen 386
working 387

App42 Android SDK
supported services 385

App42 API
user, registering with 388

app full screen
displaying 123-125

application
web page, displaying in 312-314
attributes, reference link 3

Application Not Responding (ANR) 221, 364
AppWidgetProvider class

methods 111
app widgets 47
asset files 142
AsyncTask

parameters 367
process flow 367
using, for background work 364-366

attributes, Home screen widget 111
attributes, RelativeLayout 29
audio

playing, with MediaPlayer 274-277
AudioManager

URL 274, 278
available space

checking 141

B
Backend as a Service (BaaS) 383, 384
Backendless

adding, to project 390
reference link 391
reference link, for registration 388
sign up window 389
working 390

BackendlessUser object
user, registering with 390

background
music, playing in 277

background work
AsyncTask, using for 364-366

back stack 9
Buddy

about 391
adding, to project 392
reference link 393
reference link, for registration 391
sign up page 392
supported common scenarios 391
user, registering with 393
working 393

built-in zoom
enabling 315

button state
displaying, graphics used 52-54

C
cache files 137
Call State events

monitoring 303
Camera2 (new) API

picture, taking with 290-296

403

Camera API
camera parameters, setting 289
image, capturing 297
preview, setting up 297

Camera API (old)
picture, taking with 285-288

camera view
applying, while drawing 261-263

canvas 58
Card Flip Animation

creating, with Fragments 236-242
click events

listening for 192-194
client authentication

reference link 381
common gestures

recognizing 194-196
Compass

creating, RotateAnimation used 227-231
creating, sensor data used 227-231

compound control 59
Configuration Developer Link

reference link 213
connection type

checking 315-317
ConnectivityManager

network state changes, monitoring 317, 318
reference link 318

content provider
reference link 159

Contextual Action Bar (CAB) 78
Contextual Action Mode

about 69
enabling, for view 78-81

Contextual Batch Mode
using, with ListView 82-85

Current Device Rotation
obtaining 212

custom component
creating 57, 58

custom layout
used, for creating Toast 166-170

Custom Transition
Zoom Animation, creating with 243-248

D
data

accessing, in background 154-159
passing, between Fragments 98-107
passing, to activities 10-12

database
upgrading 154

default animation duration
obtaining 249

default camera app
photo, taking with 282, 283

default video app
calling 284

designated folders
using, for screen-specific resources 54

device boot
notification, receiving of 362-364

device orientation
reading 210-212

directories
working with 141

Display Developer Link
reference link 213

DownloadManager
reference link 323

drawable 54
Drawable Animation 215

E
Eclipse ADT solution 2
emulator

locations, simulating with 339
environment sensors 208
expanded notifications 180
external storage

about 130
text file, reading from 137-140
text file, writing to 137-140

F
file

deleting 141
preventing, from being included in

galleries 141

404

Firebase
about 394
adding, to project 395
reference link 396
reference link, for registration 394
services 394
sign up window 395
user, registering with 395
working 395

Flashlight
making, with Heads-Up Notification 186-190

Floating Context Menu
creating 78

Fragment
adding, during runtime 94-97
Card Flip Animation, creating with 236-242
creating 92-94
data, passing between 98-107
main callbacks 92
removing, during runtime 94-97
using 92-94

Fragment classes
DialogFragment 92
ListFragment 92
PreferenceFragment 92

fragment shader 256
FusedLocationProviderApi interface

reference link 340

G
GCM

components 371
Geofence

creating 347-352
monitoring 347-352
properties 346

Geofence.Builder class
reference link 352

GeofencingRequest.Builder class
reference link 352

getOrientation() Developer Document
reference link 231

GLSurfaceView class
extending 254
shapes, drawing on 255-260

Google APIs
about 333
reference link 342

Google Cloud Messaging (GCM) 354
Google Cloud solutions

reference link 394
Google Play Services

reference link 340
Google sign-in

adding, to app 377-380
graphics

used, for displaying button state 52-54
GridLayout

using 33-36
GridView

using 38-41

H
hardware media controls

responding to 278-280
hardware volume keys

used, for controlling app's audio volume 278
Heads-Up Notification

Flashlight, making with 186-190
Hierarchy Viewer

about 43
layout, optimizing with 42-46

Home screen widget
attributes 111
creating 110-116
shortcut, creating on 108-110

HttpURLConnection
reference link 323

I
image

requesting, Volley used 328-330
ImageLoader, Volley

using 331
ImageView 79
Immersive Mode 123, 124
inheritance 61
Integer Resource Type web page

reference link 243

405

intent object
about 2
activities, starting with 4-6

internal storage
about 130
text file, reading from 134-136
text file, writing to 134-136

Interpolator Developer Document
reference link 249

Interpolators 217

J
JavaScript

enabling 315
JSON

URL 328
JSON response

requesting, Volley used 326-328

K
Kinvey

about 396
adding, to project 398
features 396
reference link 399
reference link, for registration 396
sign up window 397
working 398

Kinvey SDK
download link 397

L
large images

scaling down, to avoid Out of Memory
exceptions 217-220

last location
obtaining 335-338

layout
about 25
defining 26, 27
differences 37
inflating 26, 27
optimizing, with Hierarchy Viewer 42-46
similarities 37
widgets, inserting into 49-51

layout, inflating
draw 42
layout 42
measure 42

layout properties
modifying, during runtime 41, 42

lights 162
LinearLayout

example 30
using 30, 32

ListView
Contextual Batch Mode, using with 82-85
using 38-41

Loader
data, accessing in background 154-159

Localization Resources 381
locations

simulating, with emulator 339
updates, receiving 343-345
updates, stop receiving 346

lock screen notifications 181
long-press events

listening for 192-194
LruCache

reference link 332

M
main callbacks, Fragment

onActivityCreated() 92
onAttach() 92
onCreate() 92
onCreateView() 92
onDestroyView() 92
onDetach() 92
onPause() 92
onResume() 92
onStart() 92
onStop() 92

MediaPlayer
about 269
audio, playing with 274-277
notification, creating 182-184
supported audio files 274
supported file types 274
supported media sources 274
URL 278

406

media scanner 141
MediaSession

reference link 185
URL 281

MediaSessionCompat
URL 281

Menu API 69
menu item

grouping 74
modifying, during runtime 75-77
used, for launching activity 73

menus
modifying, during runtime 75-77

methods, AppWidgetProvider class
onAppWidgetOptionsChanged() 111
onDeleted() 111
onDisabled() 112
onEnabled() 112
onReceive() 112
onUpdate() 111

Mobile Backend as a Service (MBaaS)
about 388
features 388

mock location
setting, in Android Studio 339

motion sensors 209
multipart messages 307
multiple preference file

using 19
music

playing, in background 277

N
NetworkImageView, Volley

using 331
NetworkInfo

reference link 318
notification

receiving, of device boot 362-364

O
onDraw() 57
online status

checking 315-317
onLocationChanged

reference link 346

onMeasure() 57
onRestoreInstanceState() callback 17
OpenGL

declaring, in Android Manifest 254
reference link 268
rendered class, creating 255
versions 252

OpenGL Shading Language
(OpenGLSL) 256, 260

Open Graphics Library for Embedded Systems.
(OpenGL ES)

about 251
environment, setting up 252, 253
reference link 268

Options menu
creating 70-72

Overlay
Action Bar, setting as 127

P
page navigation

controlling 314
PDU (Protocol Data Unit)

reference link 312
permissions

granting, through ADB 358
revoking, through ADB 358

persistent activity data
storing 18

phone call
making 300, 301

phone call events
monitoring 302, 303

PhoneStateListener
reference link 304

photo
taking, with default camera app 282, 283

Picasso
about 221
reference link 221

picture
taking, with Camera2 (new) API 290-296
taking, with (old) Camera API 285-288

pinch-to-zoom, with multi-touch
gestures 197, 198

407

PlaybackState
URL 281

pop-up menu
about 69
creating 86-89

pop-up message 14
position sensors 209
problems

resolving, reported with GoogleApiClient
OnConnectionFailedListener 340-342

progress dialog
displaying 173-176

ProgressDialog
about 173
settings 176

projection
applying, while drawing 261-263

properties, Geofence
expiration 346
location 346
loitering delay 346
radius 346
transition type 347

Property Animation 215
Property Animation system 216
public folders

obtaining 141
Push Notification, with GCM 371-376

R
raw files 142
RelativeLayout

attributes 29
using 28, 29

Request Code 14
resource files

using 142-146
resource identifiers

reference link 55
resource selection 63
result

returning, from activities 12, 13
RotateAnimation

used, for creating Compass 227-231

RotateAnimation Developer Document
reference link 231

rotation
triangle, moving with 263-265

runtime
widgets, creating at 55, 56

S
screen-specific resources

designated folders, using for 54
SDK Packages, Android

reference link 334
Search

adding, to Action Bar 118-122
sensor data

reading 206-208
used, for creating Compass 227-231

services 2
Setup Wizard

creating, ViewPager used 236
shapes

drawing, on GLSurfaceView 255-260
ShepHertz

reference link, for registration 385
shortcut

creating, on Home screen 108-110
removing 110

Short Message Service
reference link 308

simple data
storing 130-133

slideshow
creating, with ViewPager 232-236

SmsManager
reference link 312

SMS messages
delivery status notification 307
reading 311, 312
receiving 308-311
sending 304-306

sound effects
playing, with SoundPool 270-273

SoundPool
about 269
sound effects, playing with 270-273
URL 274

408

speech recognition
adding, to app 368-370

SQLite database
creating 147-153
using 147-153

state selector 52
static Fragment 94
Sticky Immersion 126
style

about 59
applying, to view 59, 61
turning, into theme 62

sub menus
creating 73

Swipe-to-Refresh functionality
adding 200-202

System UI
dimming 126

T
TableLayout

using 33-36
tables

creating 33-36
tap gestures

recognizing 194-196
task

canceling 367
text file

reading, from external storage 137-140
reading, from internal storage 134-136
writing, to external storage 137-140
writing, to internal storage 134-136

textViewStyle item 61
theme

about 48
selecting, based on Android version 63-66
style, turning into 62

Toast
about 51
creating, custom layout used 166-170

Toast object 14
transition animation

applying 223-225
built-in animations 222
ending scene, defining 225

group-level animations 222
lifecycle callbacks 222
resource file support 222
starting scene, creating 222-225
transition-based animation 222
transition, creating 222-225
transition, starting 222-225

Transition Framework
about 222
limitations 222

transitions
AutoTransition (default transition) 222
ChangeBounds 222
Fade 222

translucent system bars 127
triangle

moving, with rotation 263-265
rotating, with user input 265-268

U
Unreal Engine

reference link 268
Unreal Engine 4

about 268
reference link 268

user
attention, obtaining 163-166
registering, with App42 API 388
registering, with BackendlessUser object 390
registering, with Buddy 393
registering, with Firebase 395
triangle, rotating with 265-268

V
Version Control Software (VCS) 319
vertex shader 256
vibrate option

using 176-178
view

Contextual Action Mode, enabling for 78-81
style, applying to 59-61

View Animation
about 215
demonstrating 216
drawbacks 216

409

View object
reference link 59

ViewPager
slideshow, creating with 232-236
used, for creating Setup Wizard 236

Volley
about 221
for Internet requests 318-323
reference link 323
request types 319
used, for requesting image 328, 329
used, for requesting JSON response 326-328

Volley Request
creating 324-326

Volley Singleton
creating 330

W
web page

displaying, in application 312-314
WebSettings

reference link 315
WebView

reference link 315
widgets

about 47
creating, at runtime 55, 56
inserting, into layout 49-51

Z
Zoom Animation

creating, with Custom Transition 243-248

	Cover
	Copyright
	Credits
	Disclaimer
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Activities
	Introduction
	Declaring an activity
	Starting a new activity with an intent object
	Switching between activities
	Passing data to another activity
	Returning a result from an activity
	Saving an activity's state
	Storing persistent activity data
	Understanding the activity lifecycle

	Chapter 2: Layouts
	Introduction
	Defining and inflating a layout
	Using RelativeLayout
	Using LinearLayout
	Creating tables – TableLayout and GridLayout
	Using ListView, GridView, and Adapters
	Changing layout properties during runtime
	Optimizing layouts with the Hierarchy Viewer

	Chapter 3: Views, Widgets,
and Styles
	Introduction
	Inserting a widget into a layout
	Using graphics to show button state
	Creating a widget at runtime
	Creating a custom component
	Applying a style to a View
	Turning a style into a theme
	Selecting theme based on the Android version

	Chapter 4: Menus
	Introduction
	Creating an Options menu
	Modifying menus and menu items during runtime
	Enabling Contextual Action Mode for a view
	Using Contextual Batch Mode with
a ListView
	Creating a pop-up menu

	Chapter 5: Exploring Fragments, AppWidgets, and the System UI
	Introduction
	Creating and using a Fragment
	Adding and removing Fragments during runtime
	Passing data between Fragments
	Creating a shortcut on the Home screen
	Creating a Home screen widget
	Adding Search to the Action Bar
	Showing your app full screen

	Chapter 6: Working with Data
	Introduction
	Storing simple data
	Read and write a text file to internal storage
	Read and write a text file to external storage
	Including resource files in your project
	Creating and using an SQLite database
	Access data in the background using a Loader

	Chapter 7: Alerts and Notifications
	Introduction
	Lights, Action, and Sound – getting the user's attention!
	Creating a Toast using a custom layout
	Displaying a message box with AlertDialog
	Displaying a progress dialog
	Lights, Action, and Sound Redux using Notifications
	Creating a Media Player Notification
	Making a Flashlight with a Heads-Up Notification

	Chapter 8: Using the Touchscreen and Sensors
	Introduction
	Listening for click and long-press events
	Recognizing tap and other common gestures
	Pinch-to-zoom with multi-touch gestures
	Swipe-to-Refresh
	Listing available sensors – an introduction
to the Android Sensor Framework
	Reading sensor data – using the Android Sensor Framework events
	Reading device orientation

	Chapter 9: Graphics and Animation
	Introduction
	Scaling down large images to avoid Out of Memory exceptions
	A Transition Animation – defining scenes and applying a transition
	Creating a Compass using Sensor data and RotateAnimation
	Creating a slideshow with ViewPager
	Creating a Card Flip Animation with Fragments
	Creating a Zoom Animation with a Custom Transition

	Chapter 10: A First Look at OpenGL ES
	Introduction
	Set up the OpenGL ES environment
	Drawing shapes on GLSurfaceView
	Applying Projection and Camera View
while drawing
	Moving the triangle with rotation
	Rotating the triangle with user input

	Chapter 11: Multimedia
	Introduction
	Playing sound effects with SoundPool
	Playing audio with MediaPlayer
	Responding to hardware media controls
in your app
	Taking a photo with the default camera app
	Taking a picture using the (old) Camera API
	Taking a picture using the Camera2 (the new) API

	Chapter 12: Telephony, Networks, and the Web
	Introduction
	How to make a phone call
	Monitoring phone call events
	How to send SMS (text) messages
	Receiving SMS messages
	Displaying a web page in your application
	Checking online status and connection type
	Getting started with Volley for Internet requests
	Canceling a Volley request
	Using Volley to request a JSON response
	Using Volley to request an image
	Using Volley's NetworkImageView and ImageLoader

	Chapter 13: Getting Location and Using Geofencing
	Introduction
	How to get the last location
	Resolving problems reported with the
GoogleApiClient OnConnectionFailedListener
	How to receive location updates
	Create and monitor a Geofence

	Chapter 14: Getting your app ready for the Play Store
	Introduction
	The new Android 6.0 Run-Time permission model
	How to schedule an alarm
	Receive notification of device boot
	Using the AsyncTask for background work
	Adding speech recognition to your app
	Push Notification using GCM
	How to add Google sign-in to your app

	Chapter 15: The Backend as a Service Options
	Introduction
	App42
	Backendless
	Buddy
	Firebase
	Kinvey

	Index

