-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsphere.h
87 lines (71 loc) · 2.89 KB
/
sphere.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#ifndef SPHERE_H
#define SPHERE_H
#include "hittable.h"
#include "rtweekend.h"
class sphere : public hittable {
public:
// Stationary Sphere
sphere(point3 _center, double _radius, std::shared_ptr<material> _material)
: center1(_center), radius(_radius), mat(_material), is_moving(false) {
auto rvec = vec3(radius, radius, radius);
bbox = aabb(center1 - rvec, center1 + rvec);
}
// Moving Sphere
sphere(point3 _center1, point3 _center2, double _radius, std::shared_ptr<material> _material)
: center1(_center1), radius(_radius), mat(_material), is_moving(true) {
auto rvec = vec3(radius, radius, radius);
aabb box1(_center1 - rvec, _center1 + rvec);
aabb box2(_center2 - rvec, _center2 + rvec);
bbox = aabb(box1, box2);
center_vec = _center2 - _center1;
}
bool hit(const ray& r, interval ray_t, hit_record& rec) const override {
point3 center = is_moving ? sphere_center(r.time()) : center1;
vec3 oc = r.origin() - center;
auto a = r.direction().length_squared();
auto half_b = dot(oc, r.direction());
auto c = oc.length_squared() - radius * radius;
auto discriminant = half_b * half_b - a * c;
if (discriminant < 0) return false;
// Find the nearest root that lies in the acceptable range.
auto sqrtd = sqrt(discriminant);
auto root = (-half_b - sqrtd) / a;
if (!ray_t.surrounds(root)) {
root = (-half_b + sqrtd) / a;
if (!ray_t.surrounds(root)) return false;
}
rec.t = root;
rec.p = r.at(rec.t);
vec3 outward_normal = (rec.p - center) / radius;
rec.set_face_normal(r, outward_normal);
get_sphere_uv(outward_normal, rec.u, rec.v);
rec.mat = mat;
return true;
}
aabb bounding_box() const override { return bbox; }
private:
point3 center1;
double radius;
std::shared_ptr<material> mat;
bool is_moving;
vec3 center_vec;
aabb bbox;
point3 sphere_center(double time) const {
// Linearly interpolate from center1 to center2 according to time, where t=0 yields
// center1, and t=1 yields center2.
return center1 + time * center_vec;
}
static void get_sphere_uv(const point3& p, double& u, double& v) {
// p: a given point on the sphere of radius one, centered at the origin.
// u: returned value [0,1] of angle around the Y axis from X=-1.
// v: returned value [0,1] of angle from Y=-1 to Y=+1.
// <1 0 0> yields <0.50 0.50> <-1 0 0> yields <0.00 0.50>
// <0 1 0> yields <0.50 1.00> < 0 -1 0> yields <0.50 0.00>
// <0 0 1> yields <0.25 0.50> < 0 0 -1> yields <0.75 0.50>
auto theta = acos(-p.y());
auto phi = atan2(-p.z(), p.x()) + pi;
u = phi / (2 * pi);
v = theta / pi;
}
};
#endif