-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDLX_exact.cpp
145 lines (138 loc) · 3.58 KB
/
DLX_exact.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long ll;
template<int N,int M>
struct DLX {
int n, m, size;
int U[M], D[M], L[M], R[M], Row[M], Col[M];
int H[M], S[M];
int ansd, ans[N];
int Limit;
void init(int _n,int _m,int lim) {
n = _n; m = _m; Limit = lim;
for(int i = 0; i <= m; ++i) {
S[i] = 0;
U[i] = D[i] = i;
L[i] = i - 1;
R[i] = i + 1;
}
R[m] = 0; L[0] = m;
size = m;
for(int i = 1; i <= n; ++i)
H[i] = -1;
ansd = 0;
}
void add(int r,int c) {
++S[Col[++size]=c];
Row[size]=r;
D[size]=D[c];
U[D[c]]=size;
U[size]=c;
D[c]=size;
if(H[r]<0)H[r]=L[size]=R[size]=size;
else {
R[size]=R[H[r]];
L[R[H[r]]]=size;
R[H[r]]=size;
L[size]=H[r];
}
}
void remove(int c) {
L[R[c]]=L[c],R[L[c]]=R[c];
for(int i = D[c]; i!=c; i=D[i]) {
for(int j = R[i]; j!=i; j=R[j])
U[D[j]]=U[j],D[U[j]]=D[j],--S[Col[j]];
}
}
void resume(int c) {
for(int i = U[c]; i!=c; i=U[i]) {
for(int j = R[i]; j!=i; j=R[j])
U[D[j]]=D[U[j]]=j,++S[Col[j]];
}
L[R[c]]=R[L[c]]=c;
}
void select(int r) {
for(int i = R[H[r]]; i != H[r]; i = R[i])
remove(Col[i]);
remove(Col[H[r]]);
ans[ansd++] = r;
}
bool main() {
return Dance(ansd);
}
bool Dance(int d) {
if(d > Limit) return false;
if(R[0] == 0) { ansd = d; return true; }
int c = R[0];
for(int i = R[0]; i != 0;i = R[i])
if(S[i] < S[c]) c = i;
remove(c);
for(int i = D[c]; i != c; i = D[i]) {
for(int j = R[i]; j!=i; j=R[j]) remove(Col[j]);
ans[d] = Row[i];
if(Dance(d + 1)) return true;
for(int j = L[i]; j!=i; j=L[j]) resume(Col[j]);
}
resume(c);
return false;
}
};
DLX<729,240000> g;
void pre_calc() {
g.init(9*9*9, 9*9*4, 9*9);
int cnt = 0, b, t1, t2, t3, t4;
for(int i = 0; i < 9; ++i) {
for(int j = 0; j < 9; ++j) {
b = (i / 3) * 3 + (j / 3);
for(int k = 1; k <= 9; ++k) {
t1 = 81*0 + i * 9 + k;
t2 = 81*1 + j * 9 + k;
t3 = 81*2 + b * 9 + k;
t4 = 81*3 + i * 9 + j + 1;
cnt += 1;
g.add(cnt, t1);
g.add(cnt, t2);
g.add(cnt, t3);
g.add(cnt, t4);
}
}
}
}
int A[9][9];
int main() {
freopen("in","r",stdin);
int T; scanf("%d", &T);
char s[12];
while(T--) {
pre_calc();
for(int i = 0; i < 9; ++i) {
scanf("%s", s);
for(int j = 0; j < 9; ++j) {
A[i][j] = s[j] - '0';
if(A[i][j] != 0) {
g.select(i * 81 + j * 9 + A[i][j]);
}
}
}
if(!g.main()) {
puts("Could not complete this grid.");
if(T)puts("");
continue;
}
for(int i = 0; i < g.ansd; ++i) {
int t = g.ans[i] - 1;
int r = t / 81; t %= 81;
int c = t / 9; t %= 9;
int v = t + 1;
A[r][c] = v;
}
for(int i = 0; i < 9; ++i) {
for(int j = 0; j < 9; ++j)
printf("%d", A[i][j]);
printf("\n");
}
if(T)puts("");
}
}