-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
225 lines (181 loc) · 8.97 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
import numpy as np
import torch
from torchvision.utils import make_grid
from utils import *
def fine_tuning(args, model, train_loader, validation_loader, target_instances, poison_label, idx_to_class, early_stop=None, device='cuda'):
param = model.fc.parameters() if args.tuning_type == 'last_layer' else model.parameters()
optimizer = torch.optim.Adam(param, lr=args.lr)
criterion = torch.nn.CrossEntropyLoss()
if args.scheduler:
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=200)
for epoch in range(args.epochs):
# training
running_loss, running_corrects, num_items = 0., 0, 0
if args.tuning_type == "last_layer" and args.setting == "Poison":
# having the penultimate feature vector of the model fixed during the training
model.eval()
else:
model.train()
for i, (inputs, labels) in enumerate(train_loader):
inputs = inputs.to(device)
labels = labels.to(device)
# forward propagation
optimizer.zero_grad()
_, outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backpropagation
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
num_items += labels.size(0)
train_epoch_loss = running_loss / num_items
train_epoch_acc = running_corrects / num_items * 100.
print('[Train #{}] Loss: {:.4f} Acc: {:.4f}%'.format(epoch, train_epoch_loss, train_epoch_acc))
# validation
model.eval()
with torch.no_grad():
running_loss, running_corrects, num_items = 0., 0, 0
for inputs, labels in validation_loader:
inputs = inputs.to(device)
labels = labels.to(device)
_, outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
num_items += labels.size(0)
val_epoch_loss = running_loss / num_items
val_epoch_acc = running_corrects / num_items * 100.
print('[Validation #{}] Loss: {:.4f} Acc: {:.4f}%'.format(epoch, val_epoch_loss, val_epoch_acc))
if args.setting == "Poison":
if (epoch == 0) or epoch % 5 == 0:
#Poisoning Attack Test Phase
with torch.no_grad():
if len(target_instances) == 1:
instance = target_instances[0]
else:
instance = target_instances[np.random.choice(range(len(target_instances)))]
_, outputs = model(instance)
_, preds = torch.max(outputs, 1)
print(f'Target Instance (predicted class name: {idx_to_class[preds.item()]})')
if args.early_stop:
early_stop(val_epoch_loss / len(validation_loader), model)
if early_stop.early_stop == True:
break
# logging to wandb
to_log = {"train_loss": train_epoch_loss,
"validation_loss": val_epoch_loss,
"validation_accuracy": val_epoch_acc,
"train_accuracy": train_epoch_acc}
if args.setting == "Poison":
to_log["train_success_rate"] = success_rate(model, target_instances, poison_label)
if args.wandb:
wandb.log(to_log)
else:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, epoch + 1, train_epoch_loss / num_items))
print('train acc: ', train_epoch_acc.item())
if args.setting == "Poison":
print('train success rate: ', success_rate(model, target_instances, poison_label))
if args.scheduler:
scheduler.step()
if __name__ == '__main__':
args = args_parser()
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
#set seed
set_random_seed(se=args.seed)
if args.early_stop:
early_stop = EarlyStopping(patience=args.patience, min_delta=0)
else:
early_stop = None
# wandb
os.environ['TORCH_HOME'] = args.checkpoints_path
if args.wandb:
os.environ['WANDB_API_KEY'] = args.wandb_key
os.environ['WANDB_CONFIG_DIR'] = "/home/mlcysec_team003/Clean-Label-Poisoning-Attacks/" # for docker
run = wandb.init(project=args.wandb_name, entity='clean_label_poisoning_attack')
wandb.config.update(args)
# model
num_classes = 10 if args.tuning_dataset == "cifar10" else 2
transform, model = gen_model(args=args,
architecture=args.model,
dataset=args.dataset,
pretrained=args.pretrained,
num_classes=num_classes)
model = model.to(device)
train_loader, val_loader, test_loader, train_set, class_to_idx = gen_data(args=args, dataset=args.tuning_dataset, transform=transform)
# idx to class
idx_to_class = {value:key for key, value in class_to_idx.items()}
if args.setting == "Poison":
# base and target instances
if args.tuning_dataset == "cat-dog":
base_instance_name, target_instance_name = 'cat', 'dog'
else:
base_instance_name, target_instance_name = np.random.choice(list(idx_to_class.values()), 2, replace=False)
base_instance, target_instances = get_base_target_instances(args,
test_loader,
base_instance_name,
target_instance_name,
class_to_idx,
device)
base_instance = base_instance[np.random.randint(0, len(base_instance))]
target_instances = (torch.cat(target_instances)[[np.random.randint(0, len(target_instances), args.budgets)]]).unsqueeze(dim=1)
# generating poisonous instance
poisonous_instances = []
for target_instance in target_instances:
poisonous_instances.append(poisoning(args,
model,
base_instance,
target_instance,
device=device,
iters=args.max_iter, lr=0.1, opacity=args.opacity))
# poisonous dataloader added to clean dataloader
clean_poison_dataloader, poisonous_dataloader = poison_data_generator(args, train_set, poisonous_instances, class_to_idx, base_instance_name, device)
# log images
if args.wandb:
logging_images(base_instance, target_instances, poisonous_instances)
# fine tune
fine_tuning(args=args,
model=model,
train_loader=clean_poison_dataloader,
validation_loader=val_loader,
target_instances=target_instances,
poison_label=class_to_idx[base_instance_name],
idx_to_class=idx_to_class,
early_stop=early_stop,
device=device)
# get success rate
# success_rate = success_rate(model, target_instances, class_to_idx[base_instance_name])
# if args.wandb:
# wandb.log({"Test/success_rate": success_rate})
# else:
# print(f"success_rate:{success_rate}")
if args.setting == 'Normal':
fine_tuning(args=args,
model=model,
train_loader=train_loader,
validation_loader=val_loader,
target_instances=None,
poison_label=None,
idx_to_class=idx_to_class,
early_stop=early_stop,
device=device)
if args.early_stop:
model.load_state_dict(early_stop.best_model)
# test acc
model.eval()
test_acc = accuracy(model, test_loader, device=device)
if args.wandb :
wandb.log({"test_acc": test_acc})
else:
print(f"test_acc: {test_acc}")
# save the checkpoint
if not os.path.exists(f'./checkpoints/seed_{args.seed}'):
os.makedirs(f'./checkpoints/seed_{args.seed}')
if args.wandb:
torch.save(model.state_dict(), f'checkpoints/seed_{args.seed}/{args.setting}_{args.dataset}_{args.tuning_dataset}_{wandb.run.name}')
else:
torch.save(model.state_dict(), f'checkpoints/seed_{args.seed}/{args.setting}_{args.dataset}_{args.tuning_dataset}')