forked from RonMcKay/OODRetrieval
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_retrieval.py
210 lines (177 loc) · 8.13 KB
/
eval_retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import pickle as pkl
from os.path import join
import numpy as np
from numpy.linalg import norm
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE, Isomap
from multiprocessing import Pool
import matplotlib.pyplot as plt
from sacred import Experiment
import logging
import sys
from configuration import CONFIG
from src.datasets.a2d2 import id_to_trainid, trainid_to_name
from src.log_utils import log_config
ex = Experiment('eval_retrieval')
log = logging.getLogger()
log.handlers = []
log_format = logging.Formatter('%(asctime)s || %(name)s - [%(levelname)s] - %(message)s')
streamhandler = logging.StreamHandler(sys.stdout)
streamhandler.setFormatter(log_format)
log.addHandler(streamhandler)
log.setLevel('INFO')
ex.logger = log
def lp_dist(point, all_points, d=2):
return ((all_points - point) ** d).sum(1) ** (1.0 / d)
def cos_dist(point, all_points):
return 1 - ((point * all_points).sum(1) / (norm(point) * norm(all_points, axis=1)))
def ap_wrapper(arguments):
return ap(*arguments)
def ap(gt, retrieval_list):
result = 0
relevant = retrieval_list == gt
for k in range(retrieval_list.shape[0]):
result += (relevant[:(k + 1)].mean() * relevant[k])
return result / relevant.sum()
def meanaverageprecision(query_indices,
gt,
embeddings,
distance_metric='euclid',
gt_annotation=None,
void=-1,
n_jobs=4):
if gt_annotation is not None:
gt[gt_annotation == 0] = void
if distance_metric == 'euclid':
args = [(gt[q], gt[np.argsort(lp_dist(embeddings[q], embeddings))][1:]) for q in query_indices]
elif distance_metric == 'cos':
args = [(gt[q], gt[np.argsort(cos_dist(embeddings[q], embeddings))][1:]) for q in query_indices]
with Pool(n_jobs) as p:
average_precisions = list(p.imap(ap_wrapper, args))
return sum(average_precisions) / len(average_precisions)
@ex.config
def config():
args = dict(
embeddings_file=join(CONFIG.metaseg_io_path, 'embeddings_128_128_densenet201.p'),
embedding_size=2,
overwrite_embeddings=False,
plot_dir=None,
method='TSNE',
distance_metric='euclid',
n_jobs=10,
min_query_count=2,
)
tsne = dict(
perplexity=30,
learning_rate=200.0,
early_exaggeration=12.0,
verbose=3,
)
@ex.automain
def main(args, tsne, _run, _log):
log_config(_run, _log)
with open(args['embeddings_file'], 'rb') as f:
data = pkl.load(f)
gt = np.array(data['gt']).squeeze()
_log.debug('Number of segments: {}'.format(gt.shape[0]))
gt = np.vectorize(id_to_trainid.get)(gt)
if (data['nn_embeddings'].shape[1] != args['embedding_size'] if 'nn_embeddings' in data.keys() else True)\
or args['overwrite_embeddings']:
embeddings = np.stack(data['embeddings'])
# _log.info('Standardizing embeddings...')
# embeddings = (embeddings - embeddings.mean()) / embeddings.std()
if args['embedding_size'] < embeddings.shape[1] if args['embedding_size'] is not None else False:
_log.info('Computing embeddings for nearest neighbor search...')
if args['method'] == 'TSNE':
_log.info('Using t-SNE with method \'{}\' and dimensionality {}'.format(
'barnes_hut' if args['embedding_size'] < 4 else 'exact',
args['embedding_size']
))
embeddings = PCA(
n_components=50 if args['embedding_size'] < 50 else 100
).fit_transform(embeddings)
embeddings = TSNE(
n_components=args['embedding_size'],
n_jobs=args['n_jobs'],
method='barnes_hut' if args['embedding_size'] < 4 else 'exact',
**tsne
).fit_transform(embeddings)
elif args['method'] == 'Isomap':
_log.info('Using Isomap method.')
embeddings = PCA(
n_components=50 if args['embedding_size'] < 50 else 100
).fit_transform(embeddings)
embeddings = Isomap(
n_components=args['embedding_size'],
n_jobs=args['n_jobs'],
).fit_transform(embeddings)
elif args['method'] == 'PCA':
_log.info('Using PCA method.')
embeddings = PCA(n_components=args['embedding_size']).fit_transform(embeddings)
data['nn_embeddings'] = embeddings
_log.debug('Saving computed manifold to embeddings file.')
with open(args['embeddings_file'], 'wb') as f:
pkl.dump(data, f)
else:
_log.info('Leaving data as it is.')
else:
embeddings = data['nn_embeddings']
_log.info('Using precomputed embeddings ({} dimensions) for nearest neighbor search...'.format(
embeddings.shape[1]))
embeddings = embeddings[gt != 255]
gt = gt[gt != 255]
if 'annotated' in data:
annotated_gt = data['annotated']
results = {}
n_queries = {}
# sel_classes = [12, 22, 3, 34]
sel_classes = list(range(37))
for cl in sel_classes:
query_list = np.argwhere(gt == cl).flatten()
if 'annotated' in data and query_list.size >= args['min_query_count']:
query_list = np.array([q for q in query_list if annotated_gt[q] != 0])
n_queries[cl] = len(query_list) if len(query_list) >= args['min_query_count'] else 0
if query_list.size >= args['min_query_count']:
results[cl] = meanaverageprecision(
query_list,
gt,
embeddings,
distance_metric=args['distance_metric'],
gt_annotation=annotated_gt if 'annotated' in data else None,
n_jobs=args['n_jobs'],
)
_log.info('{:>{width}s} ({:>4d}): {:>7.2%}'.format(trainid_to_name[cl],
len(query_list),
results[cl],
width=max(
[len(str(v)) for v in trainid_to_name.values()])))
_log.info('Average: {:.2%}'.format(sum(results.values()) / len(results.values())))
_log.info('Weighted Average: {:.2%}'.format(sum([v * n_queries[k] for k, v in results.items()])
/ sum(n_queries.values())))
if args['plot_dir'] is not None:
_log.info('Start plotting...')
fig = plt.figure('mAP values in % for retrieval in the embedding space')
ax = fig.add_subplot(111)
rects = ax.bar(x=np.arange(len(results) + 2),
height=([v * 100 for k, v in results.items()]
+ [sum(results.values()) / len(results.values()) * 100]
+ [sum([v * n_queries[k] for k, v in results.items()]) / sum(n_queries.values()) * 100]))
ax.set_xticks(np.arange(len(results) + 2))
ax.set_xticklabels(labels=[trainid_to_name[k] for k in results.keys()] + ['Average'] + ['Weighted Average'])
for rect in rects:
height = rect.get_height()
ax.annotate('{:.1f}'.format(height),
xy=(rect.get_x() + rect.get_width() / 2, height),
xytext=(0, 3), # 3 points vertical offset
textcoords="offset points",
ha='center', va='bottom')
# ax.title.set_text('Retrieval results in the embedding space')
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.yaxis.grid(True)
ax.xaxis.set_tick_params(rotation=50)
ax.set_ylabel('mAP in %')
ax.set_axisbelow(True)
plt.savefig(join(args['plot_dir'], 'map_plot.eps'), dpi=300, bbox_inches='tight')
_log.info('Saved plot of mAP results to \'{}\''.format(join(args['plot_dir'], 'map_plot.eps')))