-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatvec.h
1044 lines (873 loc) · 28.2 KB
/
matvec.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#ifndef MATVEC_H
#define MATVEC_H
/*
James William Fletcher (github.com/mrbid)
September 2021 - June 2024
Portable floating-point Vec4 lib.
(Don't rely on this, copy and paste functions from this or write your own
this is just a support lib, relying on it too much will make you dumb.)
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or
distribute this software, either in source code form or as a compiled
binary, for any purpose, commercial or non-commercial, and by any
means.
In jurisdictions that recognize copyright laws, the author or authors
of this software dedicate any and all copyright interest in the
software to the public domain. We make this dedication for the benefit
of the public at large and to the detriment of our heirs and
successors. We intend this dedication to be an overt act of
relinquishment in perpetuity of all present and future rights to this
software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
For more information, please refer to <https://unlicense.org>
*/
#include <math.h> // sqrtf logf fabsf cosf sinf
#include <string.h> // memset memcpy
#define PI 3.141592741f // PI
#define x2PI 6.283185482f // PI * 2
#define d2PI 1.570796371f // PI / 2
#define DEGREE 57.29578018f // 1 Radian as Degrees
#define RADIAN 0.01745329238f // PI / 180 (1 Degree as Radians)
#define RAD2DEG DEGREE
#define DEG2RAD RADIAN
#define FLOAT_MAX 9223372036854775807.f
typedef struct{float x,y,z,w;} vec;
static inline float randf(); // uniform [0 to 1]
static inline float randfc(); // uniform [-1 to 1]
float randfn(); // box-muller normal [bi-directional]
static inline float fRandFloat(const float min, const float max);
static inline int fRand(const float min, const float max);
int vec_ftoi(float f); // float to integer quantise
// normalising the result is optional / at the callers responsibility
void vRuv(vec* v); // Random Unit Vector
void vRuvN(vec* v); // Normal Random Unit Vector
void vRuvBT(vec* v); // Brian Tung Random Unit Vector (on surface of unit sphere)
void vRuvTA(vec* v); // T.Davison Trial & Error (inside unit sphere)
void vRuvTD(vec* v); // T.Davison Random Unit Vector Sphere
void vCross(vec* r, const vec v1, const vec v2);
float vDot(const vec v1, const vec v2);
float vSum(const vec v);
float vSumAbs(const vec v);
void vReflect(vec* r, const vec v, const vec n);
int vEqualTol(const vec a, const vec b, const float tol);
int vEqualInt(const vec a, const vec b);
void vMin(vec* r, const vec v1, const vec v2);
void vMax(vec* r, const vec v1, const vec v2);
void vNorm(vec* v);
float vDist(const vec v1, const vec v2);
float vDistSq(const vec a, const vec b);
float vDistMh(const vec a, const vec b); // manhattan
float vDistLa(const vec a, const vec b); // longest axis
float vMod(const vec v); // modulus
float vMag(const vec v); // magnitude
void vInv(vec* v); // invert
void vCopy(vec* r, const vec v);
void vDir(vec* r, const vec v1, const vec v2); // direction vector from v1 to v2
void vRotX(vec* v, const float radians);
void vRotY(vec* v, const float radians);
void vRotZ(vec* v, const float radians);
void vAdd(vec* r, const vec v1, const vec v2);
void vSub(vec* r, const vec v1, const vec v2);
void vDiv(vec* r, const vec numerator, const vec denominator);
void vMul(vec* r, const vec v1, const vec v2);
void vAddS(vec* r, const vec v1, const float v2);
void vSubS(vec* r, const vec v1, const float v2);
void vDivS(vec* r, const vec v1, const float v2);
void vMulS(vec* r, const vec v1, const float v2);
//
int srandfq = 74235;
static inline void srandf(const int seed){srandfq = seed;}
static inline float randf()
{
// https://www.musicdsp.org/en/latest/Other/273-fast-float-random-numbers.html (moc.liamg@seir.kinimod)
srandfq *= 16807;
return (float)(srandfq & 0x7FFFFFFF) * 4.6566129e-010f;
}
static inline float randfc()
{
// https://www.musicdsp.org/en/latest/Other/273-fast-float-random-numbers.html (moc.liamg@seir.kinimod)
srandfq *= 16807;
return ((float)(srandfq)) * 4.6566129e-010f;
}
static inline float fRandFloat(const float min, const float max)
{
return min + randf() * (max-min);
}
static inline int fRand(const float min, const float max)
{
return (int)((min + randf() * (max-min))+0.5f);
}
float randfn()
{
float u = randfc();
float v = randfc();
float r = u * u + v * v;
while(r == 0.f || r > 1.f)
{
u = randfc();
v = randfc();
r = u * u + v * v;
}
return u * sqrtf(-2.f * logf(r) / r);
}
void vRuv(vec* v)
{
v->x = randfc();
v->y = randfc();
v->z = randfc();
}
void vRuvN(vec* v)
{
v->x = randfn();
v->y = randfn();
v->z = randfn();
}
void vRuvBT(vec* v)
{
// https://math.stackexchange.com/a/1586185
// or should I have called this vRuvLR()
// https://mathworld.wolfram.com/SpherePointPicking.html
const float y = acosf(randfc()) - d2PI;
const float p = x2PI * randf();
v->x = cosf(y) * cosf(p);
v->y = cosf(y) * sinf(p);
v->z = sinf(y);
}
void vRuvTA(vec* v)
{
// T.P.Davison@tees.ac.uk
while(1)
{
v->x = randfc();
v->y = randfc();
v->z = randfc();
const float len = vMag(*v);
if(len <= 1.0f){return;}
}
}
void vRuvTD(vec* v)
{
// T.P.Davison@tees.ac.uk
v->x = sinf((randf() * x2PI) - PI);
v->y = cosf((randf() * x2PI) - PI);
v->z = randfc();
}
void vCross(vec* r, const vec v1, const vec v2)
{
r->x = (v1.y * v2.z) - (v2.y * v1.z);
r->y = -((v1.x * v2.z) - (v2.x * v1.z));
r->z = (v1.x * v2.y) - (v2.x * v1.y);
}
float vDot(const vec v1, const vec v2)
{
return (v1.x * v2.x) + (v1.y * v2.y) + (v1.z * v2.z);
}
float vSum(const vec v)
{
return v.x + v.y + v.z;
}
float vSumAbs(const vec v)
{
return fabs(v.x) + fabs(v.y) + fabs(v.z);
}
void vInv(vec* v)
{
v->x = -v->x;
v->y = -v->y;
v->z = -v->z;
}
void vNorm(vec* v)
{
const float len = 1.f/sqrtf(v->x*v->x + v->y*v->y + v->z*v->z);
v->x *= len;
v->y *= len;
v->z *= len;
}
float vDist(const vec v1, const vec v2)
{
const float xm = (v1.x - v2.x);
const float ym = (v1.y - v2.y);
const float zm = (v1.z - v2.z);
return sqrtf(xm*xm + ym*ym + zm*zm);
}
float vDistSq(const vec a, const vec b)
{
const float xm = (a.x - b.x);
const float ym = (a.y - b.y);
const float zm = (a.z - b.z);
return xm*xm + ym*ym + zm*zm;
}
float vDistMh(const vec a, const vec b)
{
return (a.x - b.x) + (a.y - b.y) + (a.z - b.z);
}
float vDistLa(const vec v1, const vec v2)
{
const float xm = fabsf(v1.x - v2.x);
const float ym = fabsf(v1.y - v2.y);
const float zm = fabsf(v1.z - v2.z);
float dist = xm;
if(ym > dist)
dist = ym;
if(zm > dist)
dist = zm;
return dist;
}
void vReflect(vec* r, const vec v, const vec n)
{
const float angle = vDot(v, n);
r->x = v.x - (2.f * n.x) * angle;
r->y = v.y - (2.f * n.y) * angle;
r->z = v.z - (2.f * n.z) * angle;
}
int vEqualTol(const vec a, const vec b, const float tol)
{
return a.x >= b.x - tol && a.x <= b.x + tol &&
a.y >= b.y - tol && a.y <= b.y + tol &&
a.z >= b.z - tol && a.z <= b.z + tol;
}
void vMin(vec* r, const vec v1, const vec v2)
{
if(v1.x < v2.x && v1.y < v2.y && v1.z < v2.z)
{
r->x = v1.x;
r->y = v1.y;
r->z = v1.z;
}
r->x = v2.x;
r->y = v2.y;
r->z = v2.z;
}
void vMax(vec* r, const vec v1, const vec v2)
{
if(v1.x > v2.x && v1.y > v2.y && v1.z > v2.z)
{
r->x = v1.x;
r->y = v1.y;
r->z = v1.z;
}
r->x = v2.x;
r->y = v2.y;
r->z = v2.z;
}
int vec_ftoi(float f)
{
if(f < 0.f)
f -= 0.5f;
else
f += 0.5f;
return (int)f;
}
int vEqualInt(const vec a, const vec b)
{
return vec_ftoi(a.x) == vec_ftoi(b.x) && vec_ftoi(a.y) == vec_ftoi(b.y) && vec_ftoi(a.z) == vec_ftoi(b.z);
}
float vMod(const vec v)
{
return sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
}
float vMag(const vec v)
{
return v.x*v.x + v.y*v.y + v.z*v.z;
}
void vCopy(vec* r, const vec v)
{
memcpy(r, &v, sizeof(vec));
}
void vDir(vec* r, const vec v1, const vec v2)
{
vSub(r, v2, v1);
vNorm(r);
}
void vRotX(vec* v, const float radians)
{
v->y = v->y * cosf(radians) + v->z * sinf(radians);
v->z = v->y * sinf(radians) - v->z * cosf(radians);
}
void vRotY(vec* v, const float radians)
{
v->x = v->z * sinf(radians) - v->x * cosf(radians);
v->z = v->z * cosf(radians) + v->x * sinf(radians);
}
void vRotZ(vec* v, const float radians)
{
v->x = v->x * cosf(radians) + v->y * sinf(radians);
v->y = v->x * sinf(radians) - v->y * cosf(radians);
}
void vAdd(vec* r, const vec v1, const vec v2)
{
r->x = v1.x + v2.x;
r->y = v1.y + v2.y;
r->z = v1.z + v2.z;
}
void vSub(vec* r, const vec v1, const vec v2)
{
r->x = v1.x - v2.x;
r->y = v1.y - v2.y;
r->z = v1.z - v2.z;
}
void vDiv(vec* r, const vec numerator, const vec denominator)
{
r->x = numerator.x / denominator.x;
r->y = numerator.y / denominator.y;
r->z = numerator.z / denominator.z;
}
void vMul(vec* r, const vec v1, const vec v2)
{
r->x = v1.x * v2.x;
r->y = v1.y * v2.y;
r->z = v1.z * v2.z;
}
void vAddS(vec* r, const vec v1, const float v2)
{
r->x = v1.x + v2;
r->y = v1.y + v2;
r->z = v1.z + v2;
}
void vSubS(vec* r, const vec v1, const float v2)
{
r->x = v1.x - v2;
r->y = v1.y - v2;
r->z = v1.z - v2;
}
void vDivS(vec* r, const vec v1, const float v2)
{
r->x = v1.x / v2;
r->y = v1.y / v2;
r->z = v1.z / v2;
}
void vMulS(vec* r, const vec v1, const float v2)
{
r->x = v1.x * v2;
r->y = v1.y * v2;
r->z = v1.z * v2;
}
/*
Updated: 2022
Credit: Aaftab Munshi, Dan Ginsburg, Dave Shreiner, James William Fletcher, Intel, Gabriel Cramer, Test_User
*/
typedef struct {float m[4][4];} mat;
void mIdent(mat *m);
void mCopy(mat *r, const mat *v);
void mMul(mat *r, const mat *a, const mat *b);
void mMulP(vec *r, const mat *a, const float x, const float y, const float z);
void mMulV(vec *r, const mat *a, const vec v);
void mScale(mat *r, const float x, const float y, const float z);
void mScale1(mat *r, const float s);
void mTranslate(mat *r, const float x, const float y, const float z);
void mRotate(mat *r, const float radians, float x, float y, float z); // rotate axis (rotate X to move Y up and down)
void mRotX(mat *r, const float radians); // rotate on axis
void mRotY(mat *r, const float radians); // rotate on axis
void mRotZ(mat *r, const float radians); // rotate on axis
void mAngleAxisRotate(mat *r, const mat view, const float xrot, const float yrot, const float zrot); // gimbal free rotations
void mFrustum(mat *r, const float left, const float right, const float bottom, const float top, const float nearZ, const float farZ);
void mPerspective(mat *r, const float fovy, const float aspect, const float nearZ, const float farZ);
void mOrtho(mat *r, const float left, const float right, const float bottom, const float top, const float nearZ, const float farZ);
void mLookAt(mat *r, const vec origin, const vec unit_dir);
void mInvert(float *dst, const float *mat);
void mTranspose(mat *r, const mat *m);
void mSetViewDir(mat *r, const vec dir_norm);
void mGetViewDir(vec *r, const mat matrix);
void mGetViewX(vec *r, const mat matrix);
void mGetViewY(vec *r, const mat matrix);
void mGetViewZ(vec *r, const mat matrix);
void mSetDir(mat *r, const vec dir_norm);
void mGetDirX(vec *r, const mat matrix);
void mGetDirY(vec *r, const mat matrix);
void mGetDirZ(vec *r, const mat matrix);
void mGetPos(vec *r, const mat matrix);
void mSetPos(mat *r, const vec pos);
void mDump(const mat matrix);
//
void mIdent(mat *m)
{
memset(m, 0x0, sizeof(mat));
m->m[0][0] = 1.0f;
m->m[1][1] = 1.0f;
m->m[2][2] = 1.0f;
m->m[3][3] = 1.0f;
}
void mCopy(mat *r, const mat *v)
{
memcpy(r, v, sizeof(mat));
}
void mMul(mat *r, const mat *a, const mat *b)
{
mat tmp;
for(int i = 0; i < 4; i++)
{
tmp.m[i][0] = (a->m[i][0] * b->m[0][0]) +
(a->m[i][1] * b->m[1][0]) +
(a->m[i][2] * b->m[2][0]) +
(a->m[i][3] * b->m[3][0]) ;
tmp.m[i][1] = (a->m[i][0] * b->m[0][1]) +
(a->m[i][1] * b->m[1][1]) +
(a->m[i][2] * b->m[2][1]) +
(a->m[i][3] * b->m[3][1]) ;
tmp.m[i][2] = (a->m[i][0] * b->m[0][2]) +
(a->m[i][1] * b->m[1][2]) +
(a->m[i][2] * b->m[2][2]) +
(a->m[i][3] * b->m[3][2]) ;
tmp.m[i][3] = (a->m[i][0] * b->m[0][3]) +
(a->m[i][1] * b->m[1][3]) +
(a->m[i][2] * b->m[2][3]) +
(a->m[i][3] * b->m[3][3]) ;
}
memcpy(r, &tmp, sizeof(mat));
}
void mMulP(vec *r, const mat *a, const float x, const float y, const float z)
{
r->x = (a->m[0][0] * x) +
(a->m[0][1] * x) +
(a->m[0][2] * x) +
(a->m[0][3] * x) ;
r->y = (a->m[1][0] * y) +
(a->m[1][1] * y) +
(a->m[1][2] * y) +
(a->m[1][3] * y) ;
r->z = (a->m[2][0] * z) +
(a->m[2][1] * z) +
(a->m[2][2] * z) +
(a->m[2][3] * z) ;
}
void mMulV(vec *r, const mat *a, const vec v)
{
r->x = (a->m[0][0] * v.x) +
(a->m[0][1] * v.x) +
(a->m[0][2] * v.x) +
(a->m[0][3] * v.x) ;
r->y = (a->m[1][0] * v.y) +
(a->m[1][1] * v.y) +
(a->m[1][2] * v.y) +
(a->m[1][3] * v.y) ;
r->z = (a->m[2][0] * v.z) +
(a->m[2][1] * v.z) +
(a->m[2][2] * v.z) +
(a->m[2][3] * v.z) ;
r->w = (a->m[3][0] * v.w) +
(a->m[3][1] * v.w) +
(a->m[3][2] * v.w) +
(a->m[3][3] * v.w) ;
}
void mScale(mat *r, const float x, const float y, const float z)
{
r->m[0][0] *= x;
r->m[0][1] *= x;
r->m[0][2] *= x;
r->m[0][3] *= x;
r->m[1][0] *= y;
r->m[1][1] *= y;
r->m[1][2] *= y;
r->m[1][3] *= y;
r->m[2][0] *= z;
r->m[2][1] *= z;
r->m[2][2] *= z;
r->m[2][3] *= z;
}
void mScale1(mat *r, const float s){mScale(r, s, s, s);}
void mTranslate(mat *r, const float x, const float y, const float z)
{
r->m[3][0] += (r->m[0][0] * x + r->m[1][0] * y + r->m[2][0] * z);
r->m[3][1] += (r->m[0][1] * x + r->m[1][1] * y + r->m[2][1] * z);
r->m[3][2] += (r->m[0][2] * x + r->m[1][2] * y + r->m[2][2] * z);
r->m[3][3] += (r->m[0][3] * x + r->m[1][3] * y + r->m[2][3] * z);
}
void mRotate(mat *r, const float radians, float x, float y, float z)
{
// MIT: Dan Ginsburg, Budirijanto Purnomo, Dave Shreiner, Aaftab Munshi
const float mag = 1.f/sqrtf(x * x + y * y + z * z);
const float sinAngle = sinf(radians);
const float cosAngle = cosf(radians);
if(mag > 0.0f)
{
x *= mag;
y *= mag;
z *= mag;
const float xx = x * x;
const float yy = y * y;
const float zz = z * z;
const float xy = x * y;
const float yz = y * z;
const float zx = z * x;
const float xs = x * sinAngle;
const float ys = y * sinAngle;
const float zs = z * sinAngle;
const float oneMinusCos = 1.0f - cosAngle;
mat rotMat;
rotMat.m[0][0] = (oneMinusCos * xx) + cosAngle;
rotMat.m[0][1] = (oneMinusCos * xy) - zs;
rotMat.m[0][2] = (oneMinusCos * zx) + ys;
rotMat.m[0][3] = 0.0F;
rotMat.m[1][0] = (oneMinusCos * xy) + zs;
rotMat.m[1][1] = (oneMinusCos * yy) + cosAngle;
rotMat.m[1][2] = (oneMinusCos * yz) - xs;
rotMat.m[1][3] = 0.0F;
rotMat.m[2][0] = (oneMinusCos * zx) - ys;
rotMat.m[2][1] = (oneMinusCos * yz) + xs;
rotMat.m[2][2] = (oneMinusCos * zz) + cosAngle;
rotMat.m[2][3] = 0.0F;
rotMat.m[3][0] = 0.0F;
rotMat.m[3][1] = 0.0F;
rotMat.m[3][2] = 0.0F;
rotMat.m[3][3] = 1.0F;
mMul(r, &rotMat, r);
}
}
void mRotX(mat *r, const float radians)
{
const float s = sinf(radians);
const float c = cosf(radians);
const mat t = { c, 0.f, s, 0.f,
0.f, 1.f, 0.f, 0.f,
-s, 0.f, c, 0.f,
0.f, 0.f, 0.f, 1.f };
mMul(r, &t, r);
}
void mRotY(mat *r, const float radians)
{
const float s = sinf(radians);
const float c = cosf(radians);
const mat t = { 1.f, 0.f, 0.f, 0.f,
0.f, c, -s, 0.f,
0.f, s, c, 0.f,
0.f, 0.f, 0.f, 1.f };
mMul(r, &t, r);
}
void mRotZ(mat *r, const float radians)
{
const float s = sinf(radians);
const float c = cosf(radians);
const mat t = { c, -s, 0.f, 0.f,
s, c, 0.f, 0.f,
0.f, 0.f, 1.f, 0.f,
0.f, 0.f, 0.f, 1.f };
mMul(r, &t, r);
}
void mAngleAxisRotate(mat *r, const mat view, const float xrot, const float yrot, const float zrot)
{
// Test_User angle-axis rotation
// https://en.wikipedia.org/wiki/Axis%E2%80%93angle_representation
// https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula
// this is incrementing the rotation of the provided view matrix by the xrot,yrot,zrot
vec tmp0, tmp1;
vec vecview[3] = {
{view.m[0][0], view.m[1][0], view.m[2][0]}, // r
{view.m[0][1], view.m[1][1], view.m[2][1]}, // u
{view.m[0][2], view.m[1][2], view.m[2][2]} // f
};
// left/right
vMulS(&tmp0, vecview[0], cosf(xrot));
vCross(&tmp1, vecview[1], vecview[0]);
vMulS(&tmp1, tmp1, sinf(xrot));
vMulS(&vecview[0], vecview[1], vDot(vecview[1], vecview[0]) * (1.f - cosf(xrot)));
vAdd(&vecview[0], vecview[0], tmp0);
vAdd(&vecview[0], vecview[0], tmp1);
// up/down
vMulS(&tmp0, vecview[1], cosf(yrot));
vCross(&tmp1, vecview[0], vecview[1]);
vMulS(&tmp1, tmp1, sinf(yrot));
vMulS(&vecview[1], vecview[0], vDot(vecview[0], vecview[1]) * (1.f - cosf(yrot)));
vAdd(&vecview[1], vecview[1], tmp0);
vAdd(&vecview[1], vecview[1], tmp1);
vCross(&vecview[2], vecview[0], vecview[1]);
vCross(&vecview[1], vecview[2], vecview[0]);
// roll
vMulS(&tmp0, vecview[0], cosf(zrot));
vCross(&tmp1, vecview[2], vecview[0]);
vMulS(&tmp1, tmp1, sinf(zrot));
vMulS(&vecview[0], vecview[2], vDot(vecview[2], vecview[0]) * (1.f - cosf(zrot)));
vAdd(&vecview[0], vecview[0], tmp0);
vAdd(&vecview[0], vecview[0], tmp1);
vCross(&vecview[1], vecview[2], vecview[0]);
vNorm(&vecview[0]);
vNorm(&vecview[1]);
vNorm(&vecview[2]);
*r = (mat){
vecview[0].x, vecview[1].x, vecview[2].x, 0.f,
vecview[0].y, vecview[1].y, vecview[2].y, 0.f,
vecview[0].z, vecview[1].z, vecview[2].z, 0.f,
0.f, 0.f, 0.f, 1.f
};
}
void mFrustum(mat *r, const float left, const float right, const float bottom, const float top, const float nearZ, const float farZ)
{
// MIT: Dan Ginsburg, Budirijanto Purnomo, Dave Shreiner, Aaftab Munshi
const float dX = right - left;
const float dY = top - bottom;
const float dZ = farZ - nearZ;
const float rdX = 1.f/dX;
const float rdY = 1.f/dY;
const float rdZ = 1.f/dZ;
mat frust;
if(nearZ <= 0.0f || farZ <= 0.0f || dX <= 0.0f || dY <= 0.0f || dZ <= 0.0f)
return;
frust.m[0][0] = 2.0f * nearZ * rdX;
frust.m[0][1] = frust.m[0][2] = frust.m[0][3] = 0.0f;
frust.m[1][1] = 2.0f * nearZ * rdY;
frust.m[1][0] = frust.m[1][2] = frust.m[1][3] = 0.0f;
frust.m[2][0] = (right + left) * rdX;
frust.m[2][1] = (top + bottom) * rdY;
frust.m[2][2] = -(nearZ + farZ) * rdZ;
frust.m[2][3] = -1.0f;
frust.m[3][2] = -2.0f * nearZ * farZ * rdZ;
frust.m[3][0] = frust.m[3][1] = frust.m[3][3] = 0.0f;
mMul(r, &frust, r);
}
void mPerspective(mat *r, const float fovy, const float aspect, const float nearZ, const float farZ)
{
float frustumW, frustumH;
frustumH = tanf(fovy * 0.002777778078f * PI ) * nearZ; // 0x3b360b62
frustumW = frustumH * aspect;
mFrustum(r, -frustumW, frustumW, -frustumH, frustumH, nearZ, farZ);
}
void mOrtho(mat *r, const float left, const float right, const float bottom, const float top, const float nearZ, const float farZ)
{
const float dX = right - left;
const float dY = top - bottom;
const float dZ = farZ - nearZ;
const float rdX = 1.f/dX;
const float rdY = 1.f/dY;
const float rdZ = 1.f/dZ;
mat ortho;
if(dX == 0.0f || dY == 0.0f || dZ == 0.0f)
return;
mIdent(&ortho);
ortho.m[0][0] = 2.0f * rdX;
ortho.m[3][0] = -(right + left) * rdX;
ortho.m[1][1] = 2.0f * rdY;
ortho.m[3][1] = -(top + bottom) * rdY;
ortho.m[2][2] = -2.0f * rdZ;
ortho.m[3][2] = -(nearZ + farZ) * rdZ;
mMul(r, &ortho, r);
}
void mLookAt(mat *r, const vec origin, const vec unit_dir)
{
static const vec up = (vec){0.f, 0.f, 1.f};
vec dirn;
dirn.x = unit_dir.x;
dirn.y = unit_dir.y;
dirn.z = unit_dir.z;
vec c;
vCross(&c, up, dirn);
vNorm(&c);
vec rup;
vCross(&rup, dirn, c);
r->m[0][0] = c.x;
r->m[0][1] = c.y;
r->m[0][2] = c.z;
r->m[1][0] = rup.x;
r->m[1][1] = rup.y;
r->m[1][2] = rup.z;
r->m[2][0] = dirn.x;
r->m[2][1] = dirn.y;
r->m[2][2] = dirn.z;
r->m[3][0] = origin.x;
r->m[3][1] = origin.y;
r->m[3][2] = origin.z;
}
void mInvert(float *dst, const float *mat)
{
// original source: ftp://download.intel.com/design/PentiumIII/sml/24504301.pdf
// mirrored: https://github.com/esAux/esAux-Menger/raw/main/SIMD%20Matrix%20Inverse.pdf
// Cramer Invert
float tmp[12]; /* temp array for pairs */
float src[16]; /* array of transpose source matrix */
float det; /* determinant */
/* transpose matrix */
for(int i = 0; i < 4; i++)
{
src[i] = mat[i*4];
src[i + 4] = mat[i*4 + 1];
src[i + 8] = mat[i*4 + 2];
src[i + 12] = mat[i*4 + 3];
}
/* calculate pairs for first 8 elements (cofactors) */
tmp[0] = src[10] * src[15];
tmp[1] = src[11] * src[14];
tmp[2] = src[9] * src[15];
tmp[3] = src[11] * src[13];
tmp[4] = src[9] * src[14];
tmp[5] = src[10] * src[13];
tmp[6] = src[8] * src[15];
tmp[7] = src[11] * src[12];
tmp[8] = src[8] * src[14];
tmp[9] = src[10] * src[12];
tmp[10] = src[8] * src[13];
tmp[11] = src[9] * src[12];
/* calculate first 8 elements (cofactors) */
dst[0] = tmp[0]*src[5] + tmp[3]*src[6] + tmp[4]*src[7];
dst[0] -= tmp[1]*src[5] + tmp[2]*src[6] + tmp[5]*src[7];
dst[1] = tmp[1]*src[4] + tmp[6]*src[6] + tmp[9]*src[7];
dst[1] -= tmp[0]*src[4] + tmp[7]*src[6] + tmp[8]*src[7];
dst[2] = tmp[2]*src[4] + tmp[7]*src[5] + tmp[10]*src[7];
dst[2] -= tmp[3]*src[4] + tmp[6]*src[5] + tmp[11]*src[7];
dst[3] = tmp[5]*src[4] + tmp[8]*src[5] + tmp[11]*src[6];
dst[3] -= tmp[4]*src[4] + tmp[9]*src[5] + tmp[10]*src[6];
dst[4] = tmp[1]*src[1] + tmp[2]*src[2] + tmp[5]*src[3];
dst[4] -= tmp[0]*src[1] + tmp[3]*src[2] + tmp[4]*src[3];
dst[5] = tmp[0]*src[0] + tmp[7]*src[2] + tmp[8]*src[3];
dst[5] -= tmp[1]*src[0] + tmp[6]*src[2] + tmp[9]*src[3];
dst[6] = tmp[3]*src[0] + tmp[6]*src[1] + tmp[11]*src[3];
dst[6] -= tmp[2]*src[0] + tmp[7]*src[1] + tmp[10]*src[3];
dst[7] = tmp[4]*src[0] + tmp[9]*src[1] + tmp[10]*src[2];
dst[7] -= tmp[5]*src[0] + tmp[8]*src[1] + tmp[11]*src[2];
/* calculate pairs for second 8 elements (cofactors) */
tmp[0] = src[2]*src[7];
tmp[1] = src[3]*src[6];
tmp[2] = src[1]*src[7];
tmp[3] = src[3]*src[5];
tmp[4] = src[1]*src[6];
tmp[5] = src[2]*src[5];
tmp[6] = src[0]*src[7];
tmp[7] = src[3]*src[4];
tmp[8] = src[0]*src[6];
tmp[9] = src[2]*src[4];
tmp[10] = src[0]*src[5];
tmp[11] = src[1]*src[4];
/* calculate second 8 elements (cofactors) */
dst[8] = tmp[0]*src[13] + tmp[3]*src[14] + tmp[4]*src[15];
dst[8] -= tmp[1]*src[13] + tmp[2]*src[14] + tmp[5]*src[15];
dst[9] = tmp[1]*src[12] + tmp[6]*src[14] + tmp[9]*src[15];
dst[9] -= tmp[0]*src[12] + tmp[7]*src[14] + tmp[8]*src[15];
dst[10] = tmp[2]*src[12] + tmp[7]*src[13] + tmp[10]*src[15];
dst[10]-= tmp[3]*src[12] + tmp[6]*src[13] + tmp[11]*src[15];
dst[11] = tmp[5]*src[12] + tmp[8]*src[13] + tmp[11]*src[14];
dst[11]-= tmp[4]*src[12] + tmp[9]*src[13] + tmp[10]*src[14];
dst[12] = tmp[2]*src[10] + tmp[5]*src[11] + tmp[1]*src[9];
dst[12]-= tmp[4]*src[11] + tmp[0]*src[9] + tmp[3]*src[10];
dst[13] = tmp[8]*src[11] + tmp[0]*src[8] + tmp[7]*src[10];
dst[13]-= tmp[6]*src[10] + tmp[9]*src[11] + tmp[1]*src[8];
dst[14] = tmp[6]*src[9] + tmp[11]*src[11] + tmp[3]*src[8];
dst[14]-= tmp[10]*src[11] + tmp[2]*src[8] + tmp[7]*src[9];
dst[15] = tmp[10]*src[10] + tmp[4]*src[8] + tmp[9]*src[9];
dst[15]-= tmp[8]*src[9] + tmp[11]*src[10] + tmp[5]*src[8];
/* calculate determinant */
det = src[0]*dst[0]+src[1]*dst[1]+src[2]*dst[2]+src[3]*dst[3];
/* calculate matrix inverse */
det = 1.0f/det;
for(int j = 0; j < 16; j++){dst[j] *= det;}
}
void mTranspose(mat *r, const mat *m)
{
r->m[0][0] = m->m[0][0];
r->m[1][0] = m->m[0][1];
r->m[2][0] = m->m[0][2];
r->m[3][0] = m->m[0][3];
r->m[0][1] = m->m[1][0];
r->m[1][1] = m->m[1][1];
r->m[2][1] = m->m[1][2];
r->m[3][1] = m->m[1][3];
r->m[0][2] = m->m[2][0];
r->m[1][2] = m->m[2][1];
r->m[2][2] = m->m[2][2];
r->m[3][2] = m->m[2][3];
r->m[0][3] = m->m[3][0];
r->m[1][3] = m->m[3][1];
r->m[2][3] = m->m[3][2];
r->m[3][3] = m->m[3][3];
}
//
void mSetViewDir(mat *r, const vec dir_norm)
{
static const vec up_norm = (vec){0.f, 0.f, 1.f};
vec c;
vCross(&c, up_norm, dir_norm);
vNorm(&c);
vec rup;
vCross(&rup, dir_norm, c);
r->m[0][0] = -c.x;
r->m[1][0] = -c.y;
r->m[2][0] = -c.z;
r->m[0][1] = -rup.x;
r->m[1][1] = -rup.y;
r->m[2][1] = -rup.z;
r->m[0][2] = -dir_norm.x;
r->m[1][2] = -dir_norm.y;
r->m[2][2] = -dir_norm.z;
}
void mGetViewDir(vec *r, const mat matrix)
{
mGetViewZ(r, matrix);
}
void mGetViewX(vec *r, const mat matrix)
{
r->x = -matrix.m[0][0];
r->y = -matrix.m[1][0];
r->z = -matrix.m[2][0];
}
void mGetViewY(vec *r, const mat matrix)
{
r->x = -matrix.m[0][1];
r->y = -matrix.m[1][1];
r->z = -matrix.m[2][1];
}
void mGetViewZ(vec *r, const mat matrix)
{
r->x = -matrix.m[0][2];
r->y = -matrix.m[1][2];
r->z = -matrix.m[2][2];
}
//
void mSetDir(mat *r, const vec dir_norm)
{
static const vec up_norm = (vec){0.f, 0.f, 1.f};
vec c;
vCross(&c, up_norm, dir_norm);
vNorm(&c);
vec rup;
vCross(&rup, dir_norm, c);
r->m[0][0] = c.x;
r->m[0][1] = c.y;
r->m[0][2] = c.z;
r->m[2][0] = rup.x;
r->m[2][1] = rup.y;
r->m[2][2] = rup.z;
r->m[1][0] = -dir_norm.x;
r->m[1][1] = -dir_norm.y;
r->m[1][2] = -dir_norm.z;
}
void mGetDirX(vec *r, const mat matrix)