-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathcyclic_scheduler.py
217 lines (174 loc) · 8.26 KB
/
cyclic_scheduler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler
import math
import torch
class ReduceMaxLROnRestart:
def __init__(self, ratio=0.75):
self.ratio = ratio
def __call__(self, eta_min, eta_max):
return eta_min, eta_max * self.ratio
class ExpReduceMaxLROnIteration:
def __init__(self, gamma=1):
self.gamma = gamma
def __call__(self, eta_min, eta_max, iterations):
return eta_min, eta_max * self.gamma ** iterations
class CosinePolicy:
def __call__(self, t_cur, restart_period):
return 0.5 * (1. + math.cos(math.pi *
(t_cur / restart_period)))
class ArccosinePolicy:
def __call__(self, t_cur, restart_period):
return (math.acos(max(-1, min(1, 2 * t_cur
/ restart_period - 1))) / math.pi)
class TriangularPolicy:
def __init__(self, triangular_step=0.5):
self.triangular_step = triangular_step
def __call__(self, t_cur, restart_period):
inflection_point = self.triangular_step * restart_period
point_of_triangle = (t_cur / inflection_point
if t_cur < inflection_point
else 1.0 - (t_cur - inflection_point)
/ (restart_period - inflection_point))
return point_of_triangle
class CyclicLRWithRestarts(_LRScheduler):
"""Decays learning rate with cosine annealing, normalizes weight decay
hyperparameter value, implements restarts.
https://arxiv.org/abs/1711.05101
Args:
optimizer (Optimizer): Wrapped optimizer.
batch_size: minibatch size
epoch_size: training samples per epoch
restart_period: epoch count in the first restart period
t_mult: multiplication factor by which the next restart period will expand/shrink
policy: ["cosine", "arccosine", "triangular", "triangular2", "exp_range"]
min_lr: minimum allowed learning rate
verbose: print a message on every restart
gamma: exponent used in "exp_range" policy
eta_on_restart_cb: callback executed on every restart, adjusts max or min lr
eta_on_iteration_cb: callback executed on every iteration, adjusts max or min lr
triangular_step: adjusts ratio of increasing/decreasing phases for triangular policy
Example:
>>> scheduler = CyclicLRWithRestarts(optimizer, 32, 1024, restart_period=5, t_mult=1.2)
>>> for epoch in range(100):
>>> scheduler.step()
>>> train(...)
>>> ...
>>> optimizer.zero_grad()
>>> loss.backward()
>>> optimizer.step()
>>> scheduler.batch_step()
>>> validate(...)
"""
def __init__(self, optimizer, batch_size, epoch_size, restart_period=100,
t_mult=2, last_epoch=-1, verbose=False,
policy="cosine", policy_fn=None, min_lr=1e-7,
eta_on_restart_cb=None, eta_on_iteration_cb=None,
gamma=1.0, triangular_step=0.5):
if not isinstance(optimizer, Optimizer):
raise TypeError('{} is not an Optimizer'.format(
type(optimizer).__name__))
self.optimizer = optimizer
if last_epoch == -1:
for group in optimizer.param_groups:
group.setdefault('initial_lr', group['lr'])
group.setdefault('minimum_lr', min_lr)
else:
for i, group in enumerate(optimizer.param_groups):
if 'initial_lr' not in group:
raise KeyError("param 'initial_lr' is not specified "
"in param_groups[{}] when resuming an"
" optimizer".format(i))
self.base_lrs = [group['initial_lr'] for group
in optimizer.param_groups]
self.min_lrs = [group['minimum_lr'] for group
in optimizer.param_groups]
self.base_weight_decays = [group['weight_decay'] for group
in optimizer.param_groups]
self.policy = policy
self.eta_on_restart_cb = eta_on_restart_cb
self.eta_on_iteration_cb = eta_on_iteration_cb
if policy_fn is not None:
self.policy_fn = policy_fn
elif self.policy == "cosine":
self.policy_fn = CosinePolicy()
elif self.policy == "arccosine":
self.policy_fn = ArccosinePolicy()
elif self.policy == "triangular":
self.policy_fn = TriangularPolicy(triangular_step=triangular_step)
elif self.policy == "triangular2":
self.policy_fn = TriangularPolicy(triangular_step=triangular_step)
self.eta_on_restart_cb = ReduceMaxLROnRestart(ratio=0.5)
elif self.policy == "exp_range":
self.policy_fn = TriangularPolicy(triangular_step=triangular_step)
self.eta_on_iteration_cb = ExpReduceMaxLROnIteration(gamma=gamma)
self.last_epoch = last_epoch
self.batch_size = batch_size
self.epoch_size = epoch_size
self.iteration = 0
self.total_iterations = 0
self.t_mult = t_mult
self.verbose = verbose
self.restart_period = math.ceil(restart_period)
self.restarts = 0
self.t_epoch = -1
self.epoch = -1
self.eta_min = 0
self.eta_max = 1
self.end_of_period = False
self.batch_increments = []
self._set_batch_increment()
def _on_restart(self):
if self.eta_on_restart_cb is not None:
self.eta_min, self.eta_max = self.eta_on_restart_cb(self.eta_min,
self.eta_max)
def _on_iteration(self):
if self.eta_on_iteration_cb is not None:
self.eta_min, self.eta_max = self.eta_on_iteration_cb(self.eta_min,
self.eta_max,
self.total_iterations)
def get_lr(self, t_cur):
eta_t = (self.eta_min + (self.eta_max - self.eta_min)
* self.policy_fn(t_cur, self.restart_period))
weight_decay_norm_multi = math.sqrt(self.batch_size /
(self.epoch_size *
self.restart_period))
lrs = [min_lr + (base_lr - min_lr) * eta_t for base_lr, min_lr
in zip(self.base_lrs, self.min_lrs)]
weight_decays = [base_weight_decay * eta_t * weight_decay_norm_multi
for base_weight_decay in self.base_weight_decays]
if (self.t_epoch + 1) % self.restart_period < self.t_epoch:
self.end_of_period = True
if self.t_epoch % self.restart_period < self.t_epoch:
if self.verbose:
print("Restart {} at epoch {}".format(self.restarts + 1,
self.last_epoch))
self.restart_period = math.ceil(self.restart_period * self.t_mult)
self.restarts += 1
self.t_epoch = 0
self._on_restart()
self.end_of_period = False
return zip(lrs, weight_decays)
def _set_batch_increment(self):
d, r = divmod(self.epoch_size, self.batch_size)
batches_in_epoch = d + 2 if r > 0 else d + 1
self.iteration = 0
self.batch_increments = torch.linspace(0, 1, batches_in_epoch).tolist()
def step(self):
self.last_epoch += 1
self.t_epoch += 1
self._set_batch_increment()
self.batch_step()
def batch_step(self):
try:
t_cur = self.t_epoch + self.batch_increments[self.iteration]
self._on_iteration()
self.iteration += 1
self.total_iterations += 1
except (IndexError):
raise StopIteration("Epoch size and batch size used in the "
"training loop and while initializing "
"scheduler should be the same.")
for param_group, (lr, weight_decay) in zip(self.optimizer.param_groups,
self.get_lr(t_cur)):
param_group['lr'] = lr
param_group['weight_decay'] = weight_decay