-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel_comparator.py
executable file
·86 lines (66 loc) · 3.02 KB
/
model_comparator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import os
import sys
import numpy as np
import treelite.runtime
from mpds_ml_labs.prediction import load_ml_models, prop_models, ase_to_prediction, get_aligned_descriptor
from mpds_ml_labs.common import ML_MODELS, DATA_PATH
from mpds_ml_labs.struct_utils import detect_format, poscar_to_ase, refine
from mpds_ml_labs.cif_utils import cif_to_ase
mod_path = '/data/ml_models_new'
mod_basename = '_cmpld.so'
COMPILED_MODELS = [mod_path + os.sep + prop_id + mod_basename for prop_id in list(prop_models.keys()) + ['0']]
print("Sklearn models to load:\n" + "\n".join(ML_MODELS))
active_sk_models = load_ml_models(ML_MODELS)
print("Treelite models to load:\n" + "\n".join(COMPILED_MODELS))
active_comp_models = {}
for modfile in COMPILED_MODELS:
prop_id = modfile.split('/')[-1][:1]
if prop_id not in active_sk_models:
print('Unknown model file: %s' % modfile)
continue
active_comp_models[prop_id] = treelite.runtime.Predictor(modfile, verbose=False)
active_comp_models[prop_id].metadata = active_sk_models[prop_id].metadata
active_comp_models[prop_id].n_features_ = active_sk_models[prop_id].n_features_
active_comp_models[prop_id].treelite = True
assert len(active_sk_models) == len(active_comp_models)
structures = []
if sys.argv[1:]:
inputs = [f for f in sys.argv[1:] if os.path.isfile(f)]
structures = [
f for f in inputs if f[-3:] not in ['pkl', '.so']
]
if len(sys.argv) > 1 and os.path.isdir(sys.argv[1]):
structures = [os.path.join(sys.argv[1], f) for f in os.listdir(sys.argv[1]) if os.path.isfile(os.path.join(sys.argv[1], f))]
if not structures:
structures = [os.path.join(DATA_PATH, f) for f in os.listdir(DATA_PATH) if os.path.isfile(os.path.join(DATA_PATH, f)) and 'settings.ini' not in f]
########################################################################
for fname in structures:
print(fname + "="*40)
structure = open(fname).read()
fmt = detect_format(structure)
if fmt == 'cif':
ase_obj, error = cif_to_ase(structure)
assert not error, error
elif fmt == 'poscar':
ase_obj, error = poscar_to_ase(structure)
assert not error, error
else:
print('Error: %s is not a crystal structure' % fname)
continue
if 'disordered' not in ase_obj.info:
ase_obj, error = refine(ase_obj)
assert not error, error
prediction_sk, error = ase_to_prediction(ase_obj, active_sk_models)
assert not error, error
prediction_comp, error = ase_to_prediction(ase_obj, active_comp_models)
assert not error, error
for prop_id in prediction_sk:
diff = abs(prediction_sk[prop_id]['value'] - prediction_comp[prop_id]['value'])
if diff == 0:
print("Model %s is perfect" % prop_id)
elif diff < abs(prediction_sk[prop_id]['value']) / 50: # 2%
print("Model %s is okayish" % prop_id)
else:
print('Model %s is inconsistent: %s vs. %s' % (
prop_id, prediction_sk[prop_id]['value'], prediction_comp[prop_id]['value']
))